百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

AI也能写代码!代码生成、代码补全、注释生成、代码翻译轻松搞定

yuyutoo 2025-03-08 02:01 7 浏览 0 评论

清华GLM技术团队打造的多语言代码生成模型CodeGeeX近期更新了新的开源版本「CodeGeeX2-6B」。CodeGeeX2是多语言代码生成模型CodeGeeX的第二代模型,不同于一代 CodeGeeX ,CodeGeeX2 是基于 ChatGLM2 架构加入代码预训练实现。

得益于 ChatGLM2 的更优性能,CodeGeeX2 在多项指标上取得性能提升(+107% > CodeGeeX),仅60亿参数即超过150亿参数的 StarCoder-15B 近10%。相较于一代模型,二代具有更强大的代码能力、更优秀的模型特性、更全面的AI编程助手和更开放的协议。

CodeGeeX2 特性

- 更强大的代码能力基于 ChatGLM2-6B 基座语言模型,CodeGeeX2-6B 进一步经过了 600B 代码数据预训练,相比一代模型,在代码能力上全面提升,HumanEval-X 评测集的六种编程语言均大幅提升 (Python +57%, C++ +71%, Java +54%, JavaScript +83%, Go +56%, Rust +321%),在Python上达到 35.9% 的 Pass@1 一次通过率,超越规模更大的 StarCoder-15B。

- 更优秀的模型特性继承 ChatGLM2-6B 模型特性,CodeGeeX2-6B 更好支持中英文输入,支持最大 8192 序列长度,推理速度较一代 CodeGeeX-13B 大幅提升,量化后仅需6GB显存即可运行,支持轻量级本地化部署。
- 更全面的AI编程助手CodeGeeX插件(VS Code, Jetbrains)后端升级,支持超过100种编程语言,新增上下文补全、跨文件补全等实用功能。结合 Ask CodeGeeX 交互式AI编程助手,支持中英文对话解决各种编程问题,包括且不限于代码解释、代码翻译、代码纠错、文档生成等,帮助程序员更高效开发。

- 更开放的协议CodeGeeX2-6B 权重对学术研究完全开放,可申请商业使用。


如何快速使用CodeGeeX2

GLM团队开发了支持 VS Code、 IntelliJ IDEA、PyCharm、GoLand、WebStorm、Android Studio 等IDE的 CodeGeeX 插件。在插件中,可以更直接地体验到 CodeGeeX2 模型在代码生成与补全、添加注释、代码翻译及技术问答方面的能力为开发效率带来的提升。插件下载:
https://codegeex.cn/zh-CN/downloadGuide


CodeGeeX2推理及量化教程

下载本仓库并使用pip安装环境依赖:

git clone https://github.com/THUDM/CodeGeeX2
cd CodeGeeX2
pip install -r requirements.txt

使用transformers快速调用CodeGeeX2-6B:

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True, device='cuda')  # 如使用CPU推理,device='cpu'
model = model.eval()

# CodeGeeX2支持100种编程语言,加入语言标签引导生成相应的语言
prompt = "# language: Python\n# write a bubble sort function\n"
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_length=256, top_k=1)  # 示例中使用greedy decoding,检查输出结果是否对齐
response = tokenizer.decode(outputs[0])

>>> print(response)
# language: Python
# write a bubble sort function


def bubble_sort(list):
    for i in range(len(list) - 1):
        for j in range(len(list) - 1):
            if list[j] > list[j + 1]:
                list[j], list[j + 1] = list[j + 1], list[j]
    return list


print(bubble_sort([5, 2, 1, 8, 4]))

CodeGeeX2目前支持在多种不同平台上进行推理,包括CPU推理,多卡推理,加速推理等。

- 多精度/量化推理

CodeGeeX2 使用BF16训练,推理时支持BF16/FP16/INT8/INT4,可以根据显卡显存选择合适的精度格式:

默认使用BF16精度进行推理,如显卡不支持BF16(如使用错误的格式,推理结果将出现乱码),需要转换为FP16格式:

model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().to("cuda")

- 多GPU推理

用gpus.py实现多GPU推理:

from gpus import load_model_on_gpus
model = load_model_on_gpus("THUDM/codegeex2-6b", num_gpus=2)

- Mac推理

对于搭载了 Apple Silicon 或者 AMD GPU 的 Mac,可以使用 MPS 后端运行。参考 Apple 的官方说明安装 PyTorch-Nightly(正确的版本号应该是2.x.x.dev2023xxxx,如2.1.0.dev20230729):

pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

在 MacOS 上只支持从本地加载模型(提前下载权重codegeex2-6b,codegeex2-6b-int4),支持FP16/INT8/INT4格式,并使用 mps 后端:

model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().to('mps')

- fastllm加速推理

可以使用fastllm对 CodeGeeX2 进行加速,fastllm是目前支持GLM架构的最快开源框架。首先安装fastllm_pytools:

git clone https://github.com/ztxz16/fastllm
cd fastllm
mkdir build
cd build
# 使用GPU编译,需要添加CUDA路径:export CUDA_HOME=/usr/local/cuda/bin:$PATH,export PATH=$PATH:$CUDA_HOME/bin
cmake .. -DUSE_CUDA=ON # 如果不使用GPU编译 cmake .. -DUSE_CUDA=OFF
make -j
cd tools && python setup.py install  # 确认安装是否成功,在python中 import fastllm_pytools 不报错

将huggingface转换成fastllm格式:

# 原本的调用代码
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True)

# 加入下面这两行,将huggingface模型转换成fastllm模型
from fastllm_pytools import llm
model = llm.from_hf(model, tokenizer, dtype="float16") # dtype支持 "float16", "int8", "int4"

fastllm中模型接口和huggingface不完全相同,可以参考demo/run_demo.py中的相关实现:

model.direct_query = True
outputs = model.chat(tokenizer, 
                     prompt,
                     max_length=out_seq_length,
                     top_p=top_p,
                     top_k=top_k,
                     temperature=temperature)
response = outputs[0]

相关推荐

自卑的人容易患抑郁症吗?(自卑会导致抑郁吗)

Filephoto[Photo/IC]Lowself-esteemmakesusfeelbadaboutourselves.Butdidyouknowthatovert...

中考典型同(近)义词组(同义词考题)

中考典型同(近)义词组...

WPF 消息传递简明教程(wpf messagebox.show)

...

BroadcastReceiver的原理和使用(broadcast-suppression)

一、使用中注意的几点1.动态注册、静态注册的优先级在AndroidManifest.xml中静态注册的receiver比在代码中用registerReceiver动态注册的优先级要低。发送方在send...

Arduino通过串口透传ESP 13板与java程序交互

ESP13---是一个无线板子,配置通过热点通信Arduino通过串口透传ESP13板与java程序交互...

zookeeper的Leader选举源码解析(zookeeper角色选举角色包括)

作者:京东物流梁吉超zookeeper是一个分布式服务框架,主要解决分布式应用中常见的多种数据问题,例如集群管理,状态同步等。为解决这些问题zookeeper需要Leader选举进行保障数据的强一致...

接待外国人英文口语(接待外国友人的英语口语对话)

接待外国人英文口语询问访客身份:  MayIhaveyourname,please?  请问您贵姓?  Whatcompanyareyoufrom?  您是哪个公司的?  Could...

一文深入理解AP架构Nacos注册原理

Nacos简介Nacos是一款阿里巴巴开源用于管理分布式微服务的中间件,能够帮助开发人员快速实现动态服务发现、服务配置、服务元数据及流量管理等。这篇文章主要剖析一下Nacos作为注册中心时其服务注册与...

Android面试宝典之终极大招(android面试及答案)

以下内容来自兆隆IT云学院就业部,根据多年成功就业服务经验,以及职业素养课程部分内容,归纳总结:18.请描述一下Intent和IntentFilter。Android中通过Intent...

除了Crontab,Swoole Timer也可以实现定时任务的

一般的定时器是怎么实现的呢?我总结如下:1.使用Crontab工具,写一个shell脚本,在脚本中调用PHP文件,然后定期执行该脚本;2.ignore_user_abort()和set_time_li...

Spark源码阅读:DataFrame.collect 作业提交流程思维导图

本文分为两个部分:作业提交流程思维导图关键函数列表作业提交流程思维导图...

使用Xamarin和Visual Studio开发Android可穿戴设备应用

搭建开发环境我们需要做的第一件事情是安装必要的工具。因此,你需要首先安装VisualStudio。如果您使用的是VisualStudio2010,2012或2013,那么请确保它是一个专业版本或...

Android开发者必知的5个开源库(android 开发相关源码精编解析)

过去的时间里,Android开发逐步走向成熟,一个个与Android相关的开发工具也层出不穷。不过,在面对各种新鲜事物时,不要忘了那些我们每天使用的大量开源库。在这里,向大家介绍的就是,在这个任劳任怨...

Android事件总线还能怎么玩?(android实现事件处理的步骤)

顾名思义,AndroidEventBus是一个Android平台的事件总线框架,它简化了Activity、Fragment、Service等组件之间的交互,很大程度上降低了它们之间的耦合,使我们的代码...

Android 开发中文引导-应用小部件

应用小部件是可以嵌入其它应用(例如主屏幕)并收到定期更新的微型应用视图。这些视图在用户界面中被叫做小部件,并可以用应用小部件提供者发布。可以容纳其他应用部件的应用组件叫做应用部件的宿主(1)。下面的截...

取消回复欢迎 发表评论: