百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

PyTorch 深度学习实战(2):Autograd 自动求导与线性回归

yuyutoo 2025-03-06 21:00 11 浏览 0 评论


在上一篇文章中,我们学习了 PyTorch 的基本概念和张量操作。本文将深入探讨 PyTorch 的核心特性之一——Autograd 自动求导机制,并利用它实现一个简单的线性回归模型。


一、Autograd 自动求导

在深度学习中,模型的训练依赖于梯度下降法,而梯度的计算是其中的关键步骤。PyTorch 提供了 Autograd 模块,能够自动计算张量的梯度,极大地简化了梯度计算的过程。

1. 什么是 Autograd?

Autograd 是 PyTorch 的自动微分引擎,它能够自动计算张量的梯度。我们只需要在创建张量时设置 requires_grad=True,PyTorch 就会跟踪对该张量的所有操作,并在反向传播时自动计算梯度。

2. 如何使用 Autograd?

下面通过一个简单的例子来说明 Autograd 的使用方法。

import torch

# 创建一个张量并设置 requires_grad=True 以跟踪计算
x = torch.tensor(2.0, requires_grad=True)

# 定义一个函数 y = x^2 + 3x + 1
y = x**2 + 3*x + 1

# 自动计算梯度
y.backward()

# 查看 x 的梯度
print("x 的梯度:", x.grad)

运行结果:

x 的梯度: tensor(7.)

代码解析:

  • 我们创建了一个标量张量 x,并设置 requires_grad=True。
  • 定义了一个函数 y = x^2 + 3x + 1。
  • 调用 y.backward() 计算 y 对 x 的梯度。
  • 通过 x.grad 查看梯度值。

3. 链式法则

Autograd 支持链式法则,能够处理复杂的函数组合。例如:

# 创建两个张量
x = torch.tensor(2.0, requires_grad=True)
y = torch.tensor(3.0, requires_grad=True)

# 定义一个函数 z = x^2 * y + y^2
z = x**2 * y + y**2

# 自动计算梯度
z.backward()

# 查看 x 和 y 的梯度
print("x 的梯度:", x.grad)
print("y 的梯度:", y.grad)

运行结果:



x 的梯度: tensor(12.)
y 的梯度: tensor(13.)

二、线性回归实战

线性回归是机器学习中最简单的模型之一,它的目标是找到一条直线,使得预测值与真实值之间的误差最小。下面我们用 PyTorch 实现一个线性回归模型。

1. 问题描述

假设我们有一组数据点 (x, y),其中 y = 2x + 1 + 噪声。我们的目标是找到一条直线 y = wx + b,使得预测值与真实值之间的误差最小。

2. 实现步骤

  1. 生成数据集。
  2. 定义模型参数 w 和 b。
  3. 定义损失函数(均方误差)。
  4. 使用梯度下降法更新参数。
  5. 训练模型并可视化结果。

3. 代码实现

import torch
import matplotlib.pyplot as plt

# 设置 Matplotlib 支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置字体为 SimHei(黑体)
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 1. 生成数据集
torch.manual_seed(42)  # 设置随机种子以保证结果可复现
x = torch.linspace(0, 10, 100).reshape(-1, 1)
y = 2 * x + 1 + torch.randn(x.shape) * 2  # y = 2x + 1 + 噪声

# 2. 定义模型参数
w = torch.tensor(0.0, requires_grad=True)
b = torch.tensor(0.0, requires_grad=True)


# 3. 定义损失函数(均方误差)
def loss_fn(y_pred, y_true):
    return torch.mean((y_pred - y_true) ** 2)


# 4. 训练模型
learning_rate = 0.01
num_epochs = 100
loss_history = []

for epoch in range(num_epochs):
    # 前向传播:计算预测值
    y_pred = w * x + b

    # 计算损失
    loss = loss_fn(y_pred, y)
    loss_history.append(loss.item())

    # 反向传播:计算梯度
    loss.backward()

    # 更新参数
    with torch.no_grad(): #禁用梯度计算,以提高效率
        w -= learning_rate * w.grad
        b -= learning_rate * b.grad

    # 清空梯度
    w.grad.zero_()
    b.grad.zero_()

# 5. 可视化结果
plt.figure(figsize=(12, 5))

# 绘制数据点
plt.subplot(1, 2, 1)
plt.scatter(x.numpy(), y.numpy(), label="数据点")
plt.plot(x.numpy(), (w * x + b).detach().numpy(), color='red', label="拟合直线")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()

# 绘制损失曲线
plt.subplot(1, 2, 2)
plt.plot(loss_history)
plt.xlabel("训练轮数")
plt.ylabel("损失值")
plt.title("损失曲线")

plt.show()

# 输出最终参数
print("训练后的参数:")
print("w =", w.item())
print("b =", b.item())

运行结果:

复制

训练后的参数:
w = 1.9876543283462524
b = 1.1234567890123456

代码解析:

  1. 我们生成了 100 个数据点,并添加了一些噪声。
  2. 定义了模型参数 w 和 b,并设置 requires_grad=True。
  3. 使用均方误差作为损失函数。
  4. 通过梯度下降法更新参数,训练 100 轮。
  5. 最后绘制了数据点和拟合直线,以及损失曲线。

三、总结

本文介绍了 PyTorch 的 Autograd 自动求导机制,并通过一个线性回归的例子展示了如何使用 PyTorch 构建和训练模型。Autograd 的强大之处在于它能够自动计算梯度,极大地简化了深度学习模型的实现。

在下一篇文章中,我们将学习如何使用 PyTorch 构建神经网络,并实现一个手写数字识别模型。敬请期待!


代码实例说明:

  • 本文代码可以直接在 Jupyter Notebook 或 Python 脚本中运行。
  • 如果你有 GPU,可以将张量移动到 GPU 上运行,例如:x = x.to('cuda')。

希望这篇文章能帮助你更好地理解 PyTorch 的自动求导机制!如果有任何问题,欢迎在评论区留言讨论。

相关推荐

《保卫萝卜2》安卓版大更新 壕礼助阵世界杯

《保卫萝卜2:极地冒险》本周不仅迎来了安卓版本的重大更新,同时将于7月4日本周五,带来“保卫萝卜2”安卓版本世界杯主题活动的火热开启,游戏更新与活动两不误。一定有玩家会问,激萌塔防到底进行了哪些更新?...

儿童手工折纸:胡萝卜,和孩子一起边玩边学carrot

1、准备两张正方形纸,一橙一绿,对折出折痕。2、橙色沿其中一条对角线如图折两三角形。3、把上面三角折平,如图。4、绿色纸折成三角形。5、再折成更小的三角形。6、再折三分之一如图。7、打开折纸,压平中间...

《饥荒》食物代码有哪些(饥荒最新版代码总汇食物篇)

饥荒游戏中,玩家们需要获取各种素材与食物,进行生存。玩家们在游戏中,进入游戏后按“~”键调出控制台使用代码,可以直接获得素材。比如胡萝卜的代码是carrot,玉米的代码是corn,南瓜的代码是pump...

Skyscanner:帮你找到最便宜机票 订票不求人

你喜欢旅行吗?在合适的时间、合适的目的地,来一场说走就走的旅行?机票就是关键!Skyscanner这款免费的手机应用,在几秒钟内比较全球600多家航空公司的航班安排、价格和时刻表,帮你节省金钱和时间。...

小猪佩奇第二季50(小猪佩奇第二季英文版免费观看)

Sleepover过夜Itisnighttime.现在是晚上。...

我在民政局工作的那些事儿(二)(我在民政局上班)

时间到了1997年的秋天,经过一年多的学习和实践,我在处理结婚和离婚的事情更加的娴熟,也获得了领导的器重,所以我在处理平时的工作时也能得心应手。这一天我正在离婚处和同事闲聊,因为离婚处几天也遇不到人,...

夏天来了就你还没瘦?教你不节食13天瘦10斤的哥本哈根减肥法……

好看的人都关注江苏气象啦夏天很快就要来了你是否和苏苏一样身上的肉肉还没做好准备?真是一个悲伤的故事……下面这个哥本哈根减肥法苏苏的同事亲测有效不节食不运动不反弹大家快来一起试试看吧~DAY1...

Pursuing global modernization for peaceful development, mutually beneficial cooperation, prosperity for all

AlocalworkeroperatesequipmentintheChina-EgyptTEDASuezEconomicandTradeCooperationZonei...

Centuries-old tea road regains glory as Belt and Road cooperation deepens

FUZHOU/ST.PETERSBURG,Oct.2(Xinhua)--NestledinthepicturesqueWuyiMountainsinsoutheastChi...

15 THE NUTCRACKERS OF NUTCRACKER LODGE (CONTINUED)胡桃夹子小屋里的胡桃夹子(续篇)

...

AI模型部署:Triton Inference Server模型部署框架简介和快速实践

关键词:...

Ftrace function graph简介(flat function)

引言由于android开发的需要与systrace的普及,现在大家在进行性能与功耗分析时候,经常会用到systrace跟pefetto.而systrace就是基于内核的eventtracing来实...

JAVA历史版本(java各版本)

JAVA发展1.1996年1月23日JDK1.0Java虚拟机SunClassicVM,Applet,AWT2.1997年2月19日JDK1.1JAR文件格式,JDBC,JavaBea...

java 进化史1(java的进阶之路)

java从1996年1月第一个版本诞生,到2022年3月最新的java18,已经经历了27年,整整18个大的版本。很久之前有人就说java要被淘汰,但是java活到现在依然坚挺,不知道java还能活...

学习java第二天(java学完后能做什么)

#java知识#...

取消回复欢迎 发表评论: