百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

程序员的福音,C/C++内存泄漏的终极解决方案

yuyutoo 2025-02-19 14:27 4 浏览 0 评论

众所周知,C/C++执行效率高,但难以驾驭,开车一时爽,但稍不留神容易翻车。估计每个C/C++程序员都遭受过内存泄漏的困扰。本文提供一种通过wrap malloc查找memory leak的思路,使得你翻车的时候能够自救,而不至于车毁人亡。

什么是内存泄漏?

内存泄漏就是动态申请的内存丢失引用,造成没有办法回收它(我知道杠jing要说进程退出前系统会统一回收),相当于在人身上轧个口子,伤口一直流血不止,关键这口子还不知道轧哪儿。

内存泄漏对于客户端应用可能不是什么大事,而对于长久运行的服务器程序则可能是致命的。

隐式释放

Java等傻瓜式编程语言会自动管理内存回收,你只管用,系统会通过引用计数技术跟踪动态分配的每块内存,在合适的时机自动释放掉,这种方式叫隐式释放,相当于车的自动挡。

显式释放

而C/C++需要显式的释放,也就是开发者需要确保malloc/free配对,确保每块申请的内存都恰当的释放掉,相当于车的手动挡。有很多手段可以避免内存泄漏,比如RAII、比如智能指针(大多基于引用计数)、比如内存池。C/C++程序员也是蛮拼的,一直在跟内存泄漏做殊死搏斗。

理论上,只要我们足够小心,在每次申请的时候,都牢记释放,那么这个世界就清净了。但现实往往没有这般美好,比如抛异常了,释放内存的语句执行不到,比如模块之间的指针传递,又或者某菜鸟程序员不小心埋了颗雷,所以,我们必须直面真实的世界,那就是我们会遭遇内存泄漏。

怎么查内存泄漏?

我们可以review代码,double check,结对编程,但从海量代码里找到隐藏的问题,这如同大海捞针,谈何容易啊?兄弟。

所以,我们需要借助工具,比如valgrind,但这些找内存泄漏的工具,往往对你使用动态内存的方式有某种期待,或者说约束,比如常驻内存的对象会被误报出来,然后真正有用的信息会被掩盖在误报的汪洋大海里,所以,很多时候,valgrind根本解决不了日常项目中的问题,并没什么卵用。

很多著名的开源项目,为了能用valgrind跑,都大张旗鼓的修改源代码,从而使得项目符合valgrind的要求,用vargrind跑过没有任何报警叫valgrind干净,这倒也不失为一个一劳永逸的办法。

既然这些个玩意儿都中看不中用,所以,求人不如求己,还得自力更生,多大点事儿。

operator new/delete重载和hook malloc/free

可以通过operator new/delete,operator new[]/delete[]重载,但这里有很细致的功夫,你需要全面了解,而不是贸然行动,建议看看Effective C++,对operator new系列操作符重载有专门的阐述。

你也可以hook malloc、free等c编程接口。

你还可以开启ptmalloc的调试功能,它有时候也能管点用。

什么是动态内存分配器?

动态内存分配器是介于kernel跟应用程序之间的一个函数库,linux glibc提供的动态内存分配器叫ptmalloc,因为抱了linux的大腿,故而是应用最广泛的动态内存分配器。

从kernel角度看,动态内存分配器属于应用程序层;而从应用程序的角度看,动态内存分配器属于系统层。到底属于哪一层,这取决于你的身份和角度。

应用程序可以通过mmap系统调用直接向系统申请动态内存,也可以通过动态内存分配器的malloc接口分配内存,而动态内存分配器会通过sbrk、mmap向系统分配内存,所以应用程序通过free释放的内存,并不一定会真正返还给系统,它也有可能被动态内存分配器缓存起来。

所以当你malloc/free配对得很好,但通过top命令去看进程的内存占用,还是很高,你不必感到惊讶。

google有自己的动态内存分配器tcmalloc,另外jemalloc也是著名的动态内存分配器,他们有不同的性能表现,也有不同的缓存和分配策略。你可以用它们替换linux系统glibc自带的ptmalloc。

new/delete跟malloc/free的关系

new是c++的用法,比如Foo *f = new Foo,其实它分为3步。

  1. 通过operator new()分配sizeof(Foo)的内存,最终通过malloc分配。
  2. 在新分配的内存上构建Foo对象。
  3. 返回新构建的对象地址。

new=分配内存+构造+返回,而delete则是等于析构+free。

所以搞定malloc、free就是从根本上搞定动态内存分配。

chunk

每次通过malloc返回的一块内存叫一个chunk,动态内存分配器是这样定义的,后面我们都这样称呼。

wrap malloc

gcc支持wrap,即通过传递-Wl,--wrap,malloc的方式,可以改变调用malloc的行为,把对malloc的调用链接到自定义的__wrap_malloc(size_t)函数,而我们可以在__wrap_malloc(size_t)函数的实现中通过__real_malloc(size_t)真正分配内存,而后我们可以做搞点小动作。

同样,我们可以wrap free。

malloc跟free是配对的,当然也有其他相关API,比如calloc、realloc、valloc,这些都是细节,根本上还是malloc和free,比如realloc就是malloc + free的组合。

怎么去定位内存泄漏呢?

我们会malloc各种不同size的chunk,也就是每种不同size的chunk会有不同数量,如果我们能够跟踪每种size的chunk数量,那就可以知道哪种size的chunk在泄漏。很简单,如果该size的chunk数量一直在增长,那它很可能泄漏。

光知道某种size的chunk泄漏了还不够,我们得知道是哪个调用路径上导致该size的chunk被分配,从而去检查是不是正确释放了。

怎么跟踪到每种size的chunk数量?

我们可以维护一个全局 unsigned int malloc_map[1024 * 1024]数组,该数组的下标就是chunk的size,malloc_map[size]的值就对应到该size的chunk分配量。

这等于维护了一个chunk size到chunk count的映射表,它足够快,而且可以覆盖到0 ~ 1M大小的chunk的范围,它已经足够大了,试想一次分配一兆的块已经很恐怖了,可以覆盖到大部分场景。

那大于1M的块怎么办呢?我们可以通过log的方式记录下来。

在__wrap_malloc里,++malloc_map[size]

在__wrap_free里,--malloc_map[size]

如此一来,我们便通过malloc_map记录了各size的chunk的分配量。

如何知道释放的chunk的size?

不对,free(void *p)只有一个参数,我如何知道释放的chunk的size呢?怎么办?

我们通过在__wrap_malloc(size_t)的时候,分配8+size的chunk,也就是额外分配8字节,用起始的8字节存储该chunk的size,然后返回的是(char*)chunk + 8,也就是偏移8个字节地址,返回给调用malloc的应用程序。

这样在free的时候,传入参数void* p,我们把p往前移动8个字节,解引用就能得到该chunk的大小,而该大小值就是之前在__wrap_malloc的时候设置的size。

好了,我们真正做到记录各size的chunk数量了,它就存在于malloc_map[1M]的数组中,假设64个字节的chunk一直在被分配而没有被正确回收,最终会表现在malloc_map[size]数值一直在增长,我们觉得该size的chunk很有可能泄漏,那怎么定位到是哪里调用过来的呢?

如何记录调用链?

我们可以维护一个toplist数组,该数组假设有10个元素,它保存的是chunk数最大的10种size,这个很容易做到,通过对malloc_map取top 10就行。

然后我们在__wrap_malloc(size_t)里,测试该size是不是toplist之一,如果是的话,那我们通过glibc的backtrace把调用堆栈dump到log文件里去。

注意:这里不能再分配内存,所以你只能使用backtrace,而不能使用backtrace_symbols,这样你只能得到调用堆栈的符号地址,而不是符号名。

如何把符号地址转换成符号名,也就是对应到代码行呢?答案是addr2line。

addr2line

addr2line工具可以做到,你可以追查到调用链,进而定位到内存泄漏的问题。

至此,恭喜你,你已经get到了整个核心思想。

当然,实际项目中,我们做的更多,我们不仅仅记录了toplist size,还记录了各size chunk的增量toplist,会记录大块的malloc/free,会wrap更多的API。

总结

通过wrap malloc/free + backtrace + addr2line,你就可以定位到内存泄漏了。

美好的时间过得太快,又是时候说byebye!

相关推荐

自卑的人容易患抑郁症吗?(自卑会导致抑郁吗)

Filephoto[Photo/IC]Lowself-esteemmakesusfeelbadaboutourselves.Butdidyouknowthatovert...

中考典型同(近)义词组(同义词考题)

中考典型同(近)义词组...

WPF 消息传递简明教程(wpf messagebox.show)

...

BroadcastReceiver的原理和使用(broadcast-suppression)

一、使用中注意的几点1.动态注册、静态注册的优先级在AndroidManifest.xml中静态注册的receiver比在代码中用registerReceiver动态注册的优先级要低。发送方在send...

Arduino通过串口透传ESP 13板与java程序交互

ESP13---是一个无线板子,配置通过热点通信Arduino通过串口透传ESP13板与java程序交互...

zookeeper的Leader选举源码解析(zookeeper角色选举角色包括)

作者:京东物流梁吉超zookeeper是一个分布式服务框架,主要解决分布式应用中常见的多种数据问题,例如集群管理,状态同步等。为解决这些问题zookeeper需要Leader选举进行保障数据的强一致...

接待外国人英文口语(接待外国友人的英语口语对话)

接待外国人英文口语询问访客身份:  MayIhaveyourname,please?  请问您贵姓?  Whatcompanyareyoufrom?  您是哪个公司的?  Could...

一文深入理解AP架构Nacos注册原理

Nacos简介Nacos是一款阿里巴巴开源用于管理分布式微服务的中间件,能够帮助开发人员快速实现动态服务发现、服务配置、服务元数据及流量管理等。这篇文章主要剖析一下Nacos作为注册中心时其服务注册与...

Android面试宝典之终极大招(android面试及答案)

以下内容来自兆隆IT云学院就业部,根据多年成功就业服务经验,以及职业素养课程部分内容,归纳总结:18.请描述一下Intent和IntentFilter。Android中通过Intent...

除了Crontab,Swoole Timer也可以实现定时任务的

一般的定时器是怎么实现的呢?我总结如下:1.使用Crontab工具,写一个shell脚本,在脚本中调用PHP文件,然后定期执行该脚本;2.ignore_user_abort()和set_time_li...

Spark源码阅读:DataFrame.collect 作业提交流程思维导图

本文分为两个部分:作业提交流程思维导图关键函数列表作业提交流程思维导图...

使用Xamarin和Visual Studio开发Android可穿戴设备应用

搭建开发环境我们需要做的第一件事情是安装必要的工具。因此,你需要首先安装VisualStudio。如果您使用的是VisualStudio2010,2012或2013,那么请确保它是一个专业版本或...

Android开发者必知的5个开源库(android 开发相关源码精编解析)

过去的时间里,Android开发逐步走向成熟,一个个与Android相关的开发工具也层出不穷。不过,在面对各种新鲜事物时,不要忘了那些我们每天使用的大量开源库。在这里,向大家介绍的就是,在这个任劳任怨...

Android事件总线还能怎么玩?(android实现事件处理的步骤)

顾名思义,AndroidEventBus是一个Android平台的事件总线框架,它简化了Activity、Fragment、Service等组件之间的交互,很大程度上降低了它们之间的耦合,使我们的代码...

Android 开发中文引导-应用小部件

应用小部件是可以嵌入其它应用(例如主屏幕)并收到定期更新的微型应用视图。这些视图在用户界面中被叫做小部件,并可以用应用小部件提供者发布。可以容纳其他应用部件的应用组件叫做应用部件的宿主(1)。下面的截...

取消回复欢迎 发表评论: