百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

(建议收藏)关于单片机检查变量的方法,你会几种?

yuyutoo 2025-01-05 00:10 5 浏览 0 评论

这些单片机调试方法你真的知道吗?

导读授人以鱼不如授人以渔,为什么那些前辈们能快捷定位问题,这个系列的文章将揭秘 KEIL 调试那些不为人知的事。

以下内容更适用于 STM32 单片机(51 也支持局部)。掌握了它们将加速你的调试速度,不信吗?试试看咯。

程序中最重要的是什么,数据。很多时候程序运行有问题和你的数据密切相关,假如你能实时观察程序中的数据,你觉得怎么样?

///插播一条:我自己在今年年初录制了一套还比较系统的入门单片机教程和毕业设计指导,想要的同学找我拿就行了免費的,私信我就可以哦~点我头像白色字体加我也能领取哦,记得口令一哥///

数据分为两种,一种是可变的,一种为不可变的。假如 RAM 数据为可变的,FLASH 数据为不可变的(实际上也能变更,不然你怎么把程序烧写到 FLASH 中呢),还有一种极其特殊的存在:寄存器数据。

1、变量查看

首先说说可变数据的查看方式,比如你声明的一些变量,可以通过 Watch 窗口查看。

通过以下方式可打开 Watch 窗口(任选一个窗口打开即可):

在这里可以查看变量(这里选择 Watch 1):

是否发现上面的显示不太对劲?,这是啥意思?这个是说明 KEIL 无法找到这个变量。就我所知,有两种情况会出现这种现象:

1)、这个变量不存在:有可能你之前声明过这个变量,后来发现没用到,删除了。

2)、使用 static 声明的变量。

比如像这样的:

如果是第二种情况,那么可以通过将程序运行到使用该变量的地方,然后停止就可以查看了。

添加变量:

那么如何添加你需要查看的变量呢?通常可以使用如下方法:

1)、光标处于变量位置,然后右击会出现一个界面,最后选择添加到你需要的窗口:

2)、直接将你的变量拖到你的 Watch 窗口(前提是你已经打开了 Watch 窗口):

3)、复制变量名,然后将变量名粘贴在窗口里面就可以了。

移除变量

能添加,也就能移除,可以通过以下方法移除你的变量(注意程序应该处于停止状态):

当然还有一种方法就是直接删除这个变量名,这也可以达到移除的效果。

如果你希望使用十进制的方式显示你的数据,那么试试去掉上面的 Hexadecimal Display 勾选吧。

2、内存查看

如果你想查看 FLASH 的数据怎么办?那么试试这个窗口:

比如说你想看看 FLASH 地址开始处是什么数据,只要把 0x0800 0000 输入进去后按回车键就可以了(注意数字中间没有空格,只是为了看起来方便才用空格分开的):

四字节显示不爽?那试试改变显示格式吧,无符号,有符号,char、int、float……任你选(如果不想用十进制表示,必须去掉 Decimal 的勾选):

如果需要修改某个地址的数据,也可以通过上面的方式在某个数据上右击后选择修改(Modify)。

事实上,除了 FLASH 数据,RAM 数据也是可以通过它观察的:

从这里能够看到,Memory 在数据显示上比 Watch 窗口更壮大,它能够对单片机上的所有数据进行查看,缺少点就是你不知道谁是谁了(没有变量名显示,只能靠地址分辨了)。

对于以上知识可能很多人都了解过,下面说一说一般人不知道的点:

对于单片机来说,片上外设决定了你单片机的功能,所以多数情况下都须要查看外设寄存器的值,那么该怎么样查看呢?

通过 Watch 窗口就能够了。怎么做?

以最为常用的串口外设为例说明:

之后你就可以看到寄存器的内容了:

有没有很方便啊。那到底添加什么标志符才能显示出来呢?实际上这个标志符就是那些外设宏定义了。怎么看?前面一哥说过搜索也算一个调试功能,那你在工程内搜索之后就会发现这个定义:

明白了吧,你输写的 USART1 其实就是一个指针,然后 KEIL 就会从这个地址里读出数据并依照你的指针构造体显示出来。知道了这个,你应该也就知道该怎么样查看 GPIO、SPI 等外设了。

其实这里还有一个额外的益处,不知道你是否发现了。我们都知道,使用宏定义虽好,但它有一个很麻烦的地方,就是不能很直观的知道这个值到底是多少,那么通过这个你也就能够知道 USART1 的值就是 0x4001 3800 了,也就是 USART1?外设基地址就是它:

事实上通过 Memory 窗口也是可以的:

只是没有 Watch 窗口那么直观而已。

那么为什么须要支持这两种方式呢?我们知道有些变量空间非常大,假如串口缓存数组,可能有好几 K,假如你通过 Watch 窗口查看的话,你会发现它会严重干扰你的程序运行,表现情况就是数据刷新缓慢,但是通过 Memory 就不一样了,相当流畅。所以假如你要看大数据的话,用 Memory 效果最好。

还有一个益处就是,它能随时更变更量的显示方式,假如说你把一个浮点数据放在了四个字节数组变量中,那么我想查看这个浮点数据是什么怎么办,我不可能通过浮点数据的存储格式手工计算一下吧?假如你能计算出来还好,说明你很厉害,但是万一不懂存储格式或者计算错了呢?使用 Memory 就不同了,你只有把这个数组的地址给它,然后设置显示方式为浮点型就能够了,相当方便。还有就是当使用宏定义时,查看这个宏定义的值非常不方便,使用 Memory 就能够轻松查看。

假如查看 USART1 的 DR 寄存器地址,在 Watch 窗口显示是这样的:

如果你要知道 DR 的地址,你就需要通过基地址 0x400 13800 和偏移地址 0x04 知道它的地址为 0x400 13804,即使用 Watch 单独查看 DR 也是一样:

但是通过 Memory 就是这样的:

这里千万要注意的是要使用取地址符 &,否则它就变成了这样:

外设地址怎么可能是 0,所以肯定错了。

事实上你用 Watch 也是可以的,但显得比较诡异,会让你觉得这是一个指针变量:

实际上它只是一个常量而已,并不是指针变量。

在这里你会发现,这些窗口支持运算符,看这个:

还有这个:

变量的查看也是如此,是不是特别方便啊。须要注意的是,Watch 窗口和 Memory 都支持在线修改数据,对于须要临时更改数据情况下非常有用。

3、临时变量查看

以上数据查看都有一个特点,那就是数据的地址都是固定的,这样通过地址就能知道你的数据是什么,但还有一种数据,只会在函数运行的时候才会创建,一旦函数运行完,变量空间也就消失了,这就是局部变量。

局部变量使用的空间是栈,在进入函数时分配,离开函数的时候就消失了,所以你没法确定一个局部变量的地址(事实上你能得到局部变量的地址,但这个地址是随时变化的,所以即便你得到了也没用,由于你只能得到这一次的内存地址,下一次又会变化的)。

那么该怎么样观察局部变量的值呢?

假如一个简略延时函数,我想知道传入函数的参数是什么,那么通过窗口 Call Stack + Locals 就能够了。这个是专门查看局部变量的,当然也能够在函数中查看局部静态变量(关于这个你能够看 【C语言之static】)。

当你把断点设置在函数内部,当程序停下在函数内部时,就能通过这个窗口查看了。

当程序停止在上面的第一个断点时,就可以在窗口上看到这个:

不知道你发现没有,nms 变量显示为,用有道词典取词后你就知道这是说变量不在范围内。什么意思?这是由于你的断点在函数的初始处,程序运行到这里时这个空间的值还没有意义,所以并没有显示出来(事实上由于 nms 为函数的第一个参数,所以这个 nms 其实是寄存器的值,而不是内存变量),但是当你的程序运行到第二个断点处你就会发现窗口变成了这样:

这是因为后面的代码将函数的参数传入到变量 nms 中了,导致这个变量有初始值了,并且可以看到这值为 0x00 0A,即传入参数为 10,事实上它传入的就是这个值:

但是你也能够看到,变量 Osprey 的值是能够看到的,为什么?由于它是局部静态变量,意味着它有固定地址,在没有初始化的时候就会被默认初始化为 0。

所以使用 Call Stack + Locals 窗口能够很方便的查看局部变量的数据。

下面再说一点关于这个窗口少有人知道的点:

1、能够查看函数的调用顺序:

为了说明这个,我构造几个函数出来:

Osprey_fun3 被 main 函数调用,而 Osprey_fun3 本身调用 Osprey_fun2,Osprey_fun2 调用函数 Osprey_fun1。

如何知道这个关系呢?

看这个:

最新调用的函数在最下面(所谓的压栈),从下往上看就是,Osprey_fun3 调用 Osprey_fun2,Osprey_fun2 调用函数 Osprey_fun1,而主函数 main 这个最上层调用者却并不显示在这里(假如你使用操作系统,假如 uCOS,你是没办法在任务函数中观察到这个的,由于任务函数的调用由操作系统负责)。

2、显示调用关系:

这个功能能够查看当前函数的上层调用函数位置,通过选中某一个函数后右击选择第一个就能够进入上一层调用者的函数内部了(在这里就会跳到 Osprey_fun2 的函数内部)。而第二个是进入你选中函数的内部。

这个功能有什么用?在这里你可能觉得很鸡肋,由于函数之间的调用关系很明显啊,但是在中断处理函数中却非常有用。假如说 USART1_IRQHandler 处理函数,由于这个中断可能在主程序运行的任何时候发生,所以可能在普通函数的任何位置中断它,进而进入到中断处理函数里面,而通过这个功能你就能知道是哪个函数被中断了。

实际上,你可能并不关怀被串口中断的代码位置在哪,但是对于一些错误中断就不一样了,一旦进入错误中断,你就必需找到错误代码位置才行,怎么找?假如常见的硬件错误中断?HardFault_Handler,假如进入这个中断,你该怎么定位?就是使用这个功能了(关于错误中断的处理我会单独用一小节详细介绍)。

4、寄存器变量查看

在单片机中,有一种及其特殊的变量,就是寄存器(不是那些外设寄存器),而能和 CPU 直接打交道的其实就是这些寄存器(所谓的变量操作其实都要首先通过这些寄存器才能进行的,有一个比喻是:CPU 是君王,寄存器就是君王身边的太监,而内存变量就是那些官员了,官员要和君主说话,首先要通过太监传话才行)。这些寄存器没有所谓的地址,所以你没有办法通过取址符&获取一个申明为 register 的变量(寄存器的存取速度超快,所以假如一个变量的使用得非常频繁,那么申明为 register 是一个明智之举,但这只是建议编译器去这么做罢了,编译器听不听就不知道了,所以即便你声明一个变量为 register,它还可能是内存变量),假如这个错误:

那么通过什么方法查看呢?看左边窗口:

所有的寄存器都在这显示,当寄存器的值在发生变化后(与上一次停下时的值比较),就会变更背景颜色(Watch 窗口也是如此)。

这些寄存器的值在一般情况下根本没啥用,但是对于汇编层面的调试却很有用。假如说一条代码,没有提示任何语法错误,但就是和你想要运行的结果不同,那么假如你懂点汇编,再配合这个寄存器调试,你就能很快的定位问题。

5、注意

这里要注意的一个问题是,为了显示窗口的变量能够实时更新数据,须要在View?里勾选这个:

为了更好的观察变量,这些窗口是可以单独关闭或打开的,当然也可以通过鼠标按住窗口后拖动到你想要的地方去(可以看到这里有多个选择的位置):

有的时候窗口弄得比较乱,怎么办?通过这个就可以复位窗口到默认状态:

接下来就是外设窗口展现局部,我把它也归为根底调试,由于它很常用,很有必要进修。敬请期待!

但是当我在后期查找BUG的时候,一哥发现自己主要的调试伎俩已经变成了它,其次才是Watch之类根本调试功能。

其次就是ITM,这个也是调试利器,一定程度上能够缓解 KEIL 命令行的缺少点之处。

所以既然各位在茫茫文章中看到了这篇文章,不如把我认为比较好的技能一起进修了吧。

切记一点,假如时长充裕的话,别收藏了,直接看完,收藏后很大可能你是不会再去看的。

但是看完之后,肯定会对你今后的软件开发提供非常大的帮助。

想要学习单片机的朋友 ,做毕业设计的同学,关注我们,口令一哥,与导师一起学习成长,共同进步,还有更多资料领取。

说了这么多,大家记得留意下方评论第一条(或者私信我)有干货~

相关推荐

当 Linux 根分区 (/) 已满时如何释放空间?

根分区(/)是Linux文件系统的核心,包含操作系统核心文件、配置文件、日志文件、缓存和用户数据等。当根分区满载时,系统可能出现无法写入新文件、应用程序崩溃甚至无法启动的情况。常见原因包括:...

玩转 Linux 之:磁盘分区、挂载知多少?

今天来聊聊linux下磁盘分区、挂载的问题,篇幅所限,不会聊的太底层,纯当科普!!1、Linux分区简介1.1主分区vs扩展分区硬盘分区表中最多能存储四个分区,但我们实际使用时一般只分为两...

Linux 文件搜索神器 find 实战详解,建议收藏

在Linux系统使用中,作为一个管理员,我希望能查找系统中所有的大小超过200M文件,查看近7天系统中哪些文件被修改过,找出所有子目录中的可执行文件,这些任务需求...

Linux 操作系统磁盘操作(linux 磁盘命令)

一、文档介绍本文档描述Linux操作系统下多种场景下的磁盘操作情况。二、名词解释...

Win10新版19603推送:一键清理磁盘空间、首次集成Linux文件管理器

继上周四的Build19592后,微软今晨面向快速通道的Insider会员推送Windows10新预览版,操作系统版本号Build19603。除了一些常规修复,本次更新还带了不少新功能,一起来了...

Android 16允许Linux终端使用手机全部存储空间

IT之家4月20日消息,谷歌Pixel手机正朝着成为强大便携式计算设备的目标迈进。2025年3月的更新中,Linux终端应用的推出为这一转变奠定了重要基础。该应用允许兼容的安卓设备...

Linux 系统管理大容量磁盘(2TB+)操作指南

对于容量超过2TB的磁盘,传统MBR分区表的32位寻址机制存在限制(最大支持2.2TB)。需采用GPT(GUIDPartitionTable)分区方案,其支持64位寻址,理论上限为9.4ZB(9....

Linux 服务器上查看磁盘类型的方法

方法1:使用lsblk命令lsblk输出说明:TYPE列显示设备类型,如disk(物理磁盘)、part(分区)、rom(只读存储)等。...

ESXI7虚机上的Ubuntu Linux 22.04 LVM空间扩容操作记录

本人在实际的使用中经常遇到Vmware上安装的Linux虚机的LVM扩容情况,最终实现lv的扩容,大多数情况因为虚机都是有备用或者可停机的情况,一般情况下通过添加一块物理盘再加入vg,然后扩容lv来实...

5.4K Star很容易!Windows读取Linux磁盘格式工具

[开源日记],分享10k+Star的优质开源项目...

Linux 文件系统监控:用脚本自动化磁盘空间管理

在Linux系统中,文件系统监控是一项非常重要的任务,它可以帮助我们及时发现磁盘空间不足的问题,避免因磁盘满而导致的系统服务不可用。通过编写脚本自动化磁盘空间管理,我们可以更加高效地处理这一问题。下面...

Linux磁盘管理LVM实战(linux实验磁盘管理)

LVM(逻辑卷管理器,LogicalVolumeManager)是一种在Linux系统中用于灵活管理磁盘空间的技术,通过将物理磁盘抽象为逻辑卷,实现动态调整存储容量、跨磁盘扩展等功能。本章节...

Linux查看文件大小:`ls`和`du`为何结果不同?一文讲透原理!

Linux查看文件大小:ls和du为何结果不同?一文讲透原理!在Linux运维中,查看文件大小是日常高频操作。但你是否遇到过以下困惑?...

使用 df 命令检查服务器磁盘满了,但用 du 命令发现实际小于磁盘容量

在Linux系统中,管理员或开发者经常会遇到一个令人困惑的问题:使用...

Linux磁盘爆满紧急救援指南:5步清理释放50GB+小白也能轻松搞定

“服务器卡死?网站崩溃?当Linux系统弹出‘Nospaceleft’的红色警报,别慌!本文手把手教你从‘删库到跑路’进阶为‘磁盘清理大师’,5个关键步骤+30条救命命令,快速释放磁盘空间,拯救你...

取消回复欢迎 发表评论: