百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

pymssql 读写SQL Server数据库 pymysql sqlalchemy

yuyutoo 2024-10-24 17:52 7 浏览 0 评论

pymssql包是Python语言用于连接SQL Server数据库的驱动程序(或者称作DB API),它是最终和数据库进行交互的工具。SQLAlchemy包就是利用pymssql包实现和SQL Server数据库交互的功能的。

一,pymssql包的基本组成

pymssql包由两个模块构成:pymssql 和 _mssql,pymssql 是建立在_mssql模块之上的模块,相对来说,_mssql性能更高。

pymssql模块由Connection和Cursor 两个大类构成:

  • Connection类代表MS SQL Sever数据库的一个连接,
  • Cursor类用于向数据库发送查询请求,并获取查询的的结果。

按照惯例,使用pymssql包查询数据库之前,首先创建连接:

import pymssql
conn = pymssql.connect(host='host',database='db_name',user='user',password='pwd',charset='utf8')

通过连接创建游标,通过游标执行SQL语句,查询数据或对数据进行更新操作:

cursor = conn.cursor()
cursor.execute("sql statement") 

如果执行的是修改操作,需要提交事务;如果执行的是查询操作,不需要提交:

conn.commit()

在查询完成之后,关闭连接

conn.close()

二,连接

连接对象用于连接SQL Server引擎,并设置连接的属性,比如连接超时,字符集等。

1,创建连接对象

pymssql通过类函数来构建连接对,在创建连接对象的同时,打开连接:

class pymssql.Connection(user, password, host, database, timeout, login_timeout, charset, as_dict)

2,构建Cursor对象

在创建连接对象之后,创建Cursor对象,使用Cursor对象向数据库引擎发送查询请求,并获取查询的结果:

Connection.cursor(as_dict=False)

as_dict是布尔类型,默认值是False,表示返回的数据是元组(tuple)类型;如果设置为True,返回的数据集是字典(dict)类型。

3,提交查询和自动提交模式

在执行查询之后,必须提交当前的事务,以真正执行Cursor对象的查询请求:

Connection.commit()

默认情况下,自动提交模式是关闭的,用户可以设置自动提交,pymssql自动执行Cursor发送的查询请求:

Connection.autocommit(status)

status是bool值,True表示打开自动提交模式,False表示关闭自动提交模式,默认值是False。

4,关闭连接

在执行完查询之后,关闭连接,通常情况下,使用with 语句来自动关闭连接:

Connection.close()

三,Cursor对象

通过打开的连接对象来创建Cursor对象,通过Cursor对象向数据库引擎发送查询请求,并获取查询的结果。

1,执行查询

Cursor对象调用execute**()函数来执行查询请求,

Cursor.execute(operation)
Cursor.execute(operation, params)
Cursor.executemany(operation, params_seq)

参数注释:

  • operation:表示执行的sql语句,
  • params :表示sql语句的参数,
  • params_seq:参数序列,用于sql语句包含多个参数的情况。

注意,除设置自动提交模式之外,必须在执行查询之后,通过连接对象来提交查询。

Connection.commit()

如果sql语句只包含一个参数,那么必须在sql语句中显式使用%s或%d作为占位符,分别用于引用字符型的参数和数值型的参数。

cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')

如果sql语句包含多个参数,那么使用list来传递参数:

cursor.executemany(
    "INSERT INTO persons VALUES (%d, %s, %s)",
    [(1, 'John Smith', 'John Doe'),
     (2, 'Jane Doe', 'Joe Dog'),
     (3, 'Mike T.', 'Sarah H.')])

2,获取查询结果

Cursor对象调用fetch**()函数来获取查询的结果:

Cursor.fetchone()
Cursor.fetchmany(size=None)
Cursor.fetchall()

fetch**()函数是迭代的:

  • fetchone():表示从查询结果中获取下一行(next row)
  • fetchmany():表示从查询结果中获取下面的多行(next batch)
  • fetchall():表示从查询结果中获取剩余的所有数据行(all remaining)

3,跳过结果集

当查询的结果包含多个结果集时,可以跳过当前的结果集,跳到下一个结果集:

Cursor.nextset()

如果当前结果集还有数据行未被读取,那么这些剩余的数据行会被丢弃。

四,使用Cursor对象查询数据

游标cursor是由连接创建的对象,可以在游标中执行查询,并设置数据返回的格式。当执行select语句获取数据时,返回的数据行有两种格式:元组和字典,行的默认格式是元组。

cursor = conn.cursor(as_dict=True) 

pymssql返回的数据集的格式是在创建游标时设置的,当参数 as_dict为True时,返回的行是字典格式,该参数的默认值是False,因此,默认的行格式是元组。

由于游标是一个迭代器,因此,可以使用for语句以迭代方式逐行处理查询的结果集。

for row in cursor:

1,以元组方式返回数据行

默认情况下,游标返回的每一个数据行,都是一个元组结构:

cursor=connect.cursor()
cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
for row in cursor:
    print('row = %r' % (row,))

2,以字典方式返回数据行

当设置游标以字典格式返回数据时,每一行都是一个字典结构:

 cursor = conn.cursor(as_dict=True)
 cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
 for row in cursor:
     print("ID=%d, Name=%s" % (row['id'], row['name']))

五,使用Cursor对象更新数据

在执行update、delete或insert命令对数据进行更新时,需要显式提交事务。

1,执行单条语句修改数据

当需要更新数据时,调用游标的execute()函数执行SQL命令来实现,可以以参数化的方式来执行,参数化类似于python的string.format()函数,通过格式化的字符串、占位符和参数来生成TSQL脚本。

cursor.execute(operation)
cursor.execute(operation, params)

通过游标的execute()函数来执行TSQL语句,调用 commit() 来提交事务

cursor.execute("sql statement")  
conn.commit()

或者以参数化的方式来执行:

cursor.execute("update id=1 FROM persons WHERE salesrep='%s'", 'John Doe')
conn.commit()

2,执行数据的多行插入

如果要在一个事务中执行多条SQL命令,可以调用游标的executemany()函数:

cursor.executemany(operation, params_seq)

如果需要插入多条记录,可以使用游标的executemany()函数,该函数包含模板SQL 命令和一个格式化的参数列表,用于在一条事务中插入多条记录:

args=[(1, 'John Smith', 'John Doe'),
     (2, 'Jane Doe', 'Joe Dog'),
     (3, 'Mike T.', 'Sarah H.')]

cursor.executemany("INSERT INTO persons VALUES (%d, %s, %s)", args )
conn.commit()

六,调用存储过程

从pymssql 2.0.0开始,可以使用callproc()函数来执行存储过程,callproc()函数的语法是:

result_args = cursor.callproc(proc_name, args=())

第一个参数是存储过程的名称,第二个参数args是一个元组类型,对于存储过程的每一个参数,都需要传递值。对于OUT参数,也必须传递值,通常传递0。

callproc()函数返回的是输入args的修改之后的副本,IN参数在result_args中不变,OUT参数在result_args中代表存储过程输出的值。

举个例子,对于存储add_num,有两个IN参数,一个OUT参数:

CREATE PROCEDURE add_num(IN num1 INT, IN num2 INT, OUT sum INT)

调用callproc()函数的格式是:

result_args = (5, 6, 0) # 0 is to hold value of the OUT parameter sum
cursor.callproc('add_num', result_args)

以下示例代码,使用上下文管理器来调用callproc()执行存储过程:

with pymssql.connect(server, user, password, "tempdb") as conn:
    with conn.cursor(as_dict=True) as cursor:
        cursor.callproc('sp_name', ('arg1',))
        for row in cursor:
        print("ID=%d, Name=%s" % (row['id'], row['name']))

经过我的测试,我发现不管是使用callproc(),还是使用execute('exec sp_name'),pymssql都不能执行复杂的存储过程,这让人很是头疼。

七,pymssql模块的基本操作

1,pymssql的基本操作

from os import getenv
import pymssql

server = getenv("PYMSSQL_TEST_SERVER")
user = getenv("PYMSSQL_TEST_USERNAME")
password = getenv("PYMSSQL_TEST_PASSWORD")

conn = pymssql.connect(server, user, password, "tempdb")
cursor = conn.cursor(as_dict=False)
cursor.execute("TSQL query")
cursor.executemany("INSERT INTO persons VALUES (%d, %s, %s)",
    [(1, 'John Smith', 'John Doe'),
     (2, 'Jane Doe', 'Joe Dog'),
     (3, 'Mike T.', 'Sarah H.')])
# you must call commit() to persist your data if you don't set autocommit to True
conn.commit()

cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
row = cursor.fetchone()
while row:
    print("ID=%d, Name=%s" % (row[0], row[1]))
    row = cursor.fetchone()

conn.close()

2,以字典集返回数据行

conn = pymssql.connect(server, user, password, "tempdb")
cursor = conn.cursor(as_dict=True)

cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
for row in cursor:
    print("ID=%d, Name=%s" % (row['id'], row['name']))

conn.close()

3,使用with语句

with是上下文管理器,可以自动关闭上下文。如果使用with语句来创建连接对象和Cursor对象,那么就不需要显式地关闭连接和Cursor对象,在语句执行完成之后,Python会自动检测连接对象和Cursor对象的作用域,一旦连接对象或Cursor对象不再有效,Python就会关闭连接或Cursor对象。

with pymssql.connect(server, user, password, "tempdb") as conn:
    with conn.cursor(as_dict=True) as cursor:
        cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
        for row in cursor:
            print("ID=%d, Name=%s" % (row['id'], row['name']))

八,附上代码库

附上代码,以飨读者。

import pymssql
from sqlalchemy import create_engine
import pandas as pd
from sqlalchemy.sql import text as sql_text

class DBHelper:
    def __init__(self):
        self.name='DB Helper'
        self.db_host = r'sql server'
        self.db_name = 'db name'
        self.db_user = r'sa' 
        self.db_password = r'pwd'

######################################################
##                   data connection                ##
######################################################

    def get_engine(self):
        str_format = 'mssql+pymssql://{0}:{1}@{2}/{3}?charset=utf8'
        connection_str = str_format.format(self.db_user,self.db_password,self.db_host,self.db_name)
        engine = create_engine(connection_str,echo=False)
        return engine

    def get_pymssql_conn(self):
        conn = pymssql.connect(self.db_host, self.db_user, self.db_password, self.db_name)
        return conn


######################################################
##                common SQL APIs                   ##
######################################################

    def write_data(self,df,destination,if_exists='append',schema='dbo'):
        engine = self.get_engine()
        df.to_sql(destination, con=engine, if_exists=if_exists,index = False, schema=schema
                  , method='multi', chunksize=1000)

    def read_data(self,sql):
        engine = self.get_engine()
        df = pd.read_sql(sql, con=engine)
        return df

    def exec_sql(self,sql):
        engine = self.get_engine()
        con = engine.connect()
        with con.begin() as tran: 
            con.execute(sql_text(sql).execution_options(autocommit=True))

    def exec_sp(self,sp_name,*paras):
        with pymssql.connect(self.db_host, self.db_user, self.db_password, database=self.db_name) as conn:
            with conn.cursor(as_dict=False) as cursor:
                try:
                    cursor.callproc(sp_name, paras)
                    cursor.nextset()
                    conn.commit()
                except Exception as e:
                    print(e)

    def exec_sp_result(self,sp_name,*paras):
        with pymssql.connect(self.db_host, self.db_user, self.db_password, database=self.db_name) as conn:
            with conn.cursor(as_dict=True) as cursor:
                try:
                    cursor.callproc(sp_name, paras)
                    cursor.nextset()
                    result=cursor.fetchall()

                    conn.commit()
                    df=pd.DataFrame.from_records(result)

                    return df
                except Exception as e:
                    print(e)

相关推荐

MATLAB实例讲解—求二元函数的极值

实例程序...

解析式大赛的获奖作品代码和公式公布啦!

上方超级数学建模可加关注传播数学干货,学会理性的方式去思考问题大家期待已久的运行代码终于新鲜出炉了!!!抱歉让各位粉丝久等了接下来就是揭秘奇迹的时刻1、emoji解析式:无代码:holdon...

基于MATLAB的ACC控制算法设计及仿真测试

作者...

MATLAB基础学习之坐标转换(matlab改坐标)

(一)平面坐标转换1.cart2pol:将笛卡尔坐标转换为极坐标;2.pol2cart:将极坐标转换为笛卡尔坐标;(二)立体坐标转换1.cart2sph:将笛卡尔坐标转换为极坐标;2.sph2cart...

Java NIO:从 Buffer、Channel、Selector 到 Zero-copy、I/O 多路复用

NIO...

「太极创客」零基础入门学用物联网 - MQTT篇 1-9 自我测试

到目前为止,我们已经掌握了MQTT通讯的基本流程以及如何使用ESP8266来发布和订阅MQTT消息。这节课我们来进行自我测试。...

用豆包改了一下午程序,感觉它聪明得超乎想象

之前低估了AI的聪明程度,AI持续学习下去,未来可以做的事情太多了,编程已经算是比较复杂的事情都能完成得这么好,那些项目计划、工作报告更是小儿科。今天用豆包改了几个程序,提出的BUG也能修改完成...

Node-Media-Server开源流行Nodejs流媒体服务器

简介Node-Media-Server一个Node.js实现的RTMP/HTTP/WebSocket/HLS/DASH流媒体服务器。开源github地址:https://github.com/il...

如何应对 RAG 开发挑战?12 个痛点逐一击破

受到论文《SevenFailurePointsWhenEngineeringaRetrievalAugmentedGenerationSystem》的启发,并结合实际开发RAG(检...

团队协作-代码格式化工具clang-format

环境:clang-format:10.0.0前言统一的代码规范对于整个团队来说十分重要,通过git/svn在提交前进行统一的ClangFormat格式化,可以有效避免由于人工操作带来的代码格式问题。C...

如何编写自己的Arduino库?(arduino怎么自己写库)

支持一对一答疑的购买地址...

Auto CAD 命令(A)(cad命令aaw)

ABOUT(命令)显示有关产品的信息。...

一文读懂设计模式,看这篇就够了(设计模式是干嘛的)

转载:javadoop.com/post/design-pattern一直想写一篇介绍设计模式的文章,让读者可以很快看完,而且一看就懂,看懂就会用,同时不会将各个模式搞混。自认为本文还是写得不错的,花...

ASL开发者指南:构建健壮高效的C++应用

1.库介绍AdobeSourceLibraries(ASL),现在由stlab维护,是一组专注于提供高质量、经过实战检验的C++组件的集合。它最初由Adobe公司开发,旨在解决构建...

linux下GDB使用方法(linux怎么用gdb调试)

gdb是GNU开源组织发布的一个强大的Linux下的程序调试工具。一般来说,GDB主要帮助你完成下面四个方面的功能:1、启动你的程序,可以按照你的自定义的要求随心所欲的运行程序。2、可让被调试的程...

取消回复欢迎 发表评论: