Go 每日一库之 Uber 开源的优秀日志库 zap
yuyutoo 2024-10-20 13:12 8 浏览 0 评论
以下文章来源于GoUpUp ,作者dj
简介
在很早之前的文章中,我们介绍过 Go 标准日志库log和结构化的日志库logrus。在热点函数中记录日志对日志库的执行性能有较高的要求,不能影响正常逻辑的执行时间。uber开源的日志库zap,对性能和内存分配做了极致的优化。
快速使用
先安装:
nbsp;go get go.uber.org/zap
后使用:
package main
import (
"time"
"go.uber.org/zap"
)
func main() {
logger := zap.NewExample()
defer logger.Sync()
url := "http://example.org/api"
logger.Info("failed to fetch URL",
zap.String("url", url),
zap.Int("attempt", 3),
zap.Duration("backoff", time.Second),
)
sugar := logger.Sugar()
sugar.Infow("failed to fetch URL",
"url", url,
"attempt", 3,
"backoff", time.Second,
)
sugar.Infof("Failed to fetch URL: %s", url)
}
zap库的使用与其他的日志库非常相似。先创建一个logger,然后调用各个级别的方法记录日志(Debug/Info/Error/Warn)。zap提供了几个快速创建logger的方法,zap.NewExample()、zap.NewDevelopment()、zap.NewProduction(),还有高度定制化的创建方法zap.New()。创建前 3 个logger时,zap会使用一些预定义的设置,它们的使用场景也有所不同。Example适合用在测试代码中,Development在开发环境中使用,Production用在生成环境。
zap底层 API 可以设置缓存,所以一般使用defer logger.Sync()将缓存同步到文件中。
由于fmt.Printf之类的方法大量使用interface{}和反射,会有不少性能损失,并且增加了内存分配的频次。zap为了提高性能、减少内存分配次数,没有使用反射,而且默认的Logger只支持强类型的、结构化的日志。必须使用zap提供的方法记录字段。zap为 Go 语言中所有的基本类型和其他常见类型都提供了方法。这些方法的名称也比较好记忆,zap.Type(Type为bool/int/uint/float64/complex64/time.Time/time.Duration/error等)就表示该类型的字段,zap.Typep以p结尾表示该类型指针的字段,zap.Types以s结尾表示该类型切片的字段。如:
- zap.Bool(key string, val bool) Field:bool字段
- zap.Boolp(key string, val *bool) Field:bool指针字段;
- zap.Bools(key string, val []bool) Field:bool切片字段。
当然也有一些特殊类型的字段:
- zap.Any(key string, value interface{}) Field:任意类型的字段;
- zap.Binary(key string, val []byte) Field:二进制串的字段。
当然,每个字段都用方法包一层用起来比较繁琐。zap也提供了便捷的方法SugarLogger,可以使用printf格式符的方式。调用logger.Sugar()即可创建SugaredLogger。SugaredLogger的使用比Logger简单,只是性能比Logger低 50% 左右,可以用在非热点函数中。调用SugarLogger以f结尾的方法与fmt.Printf没什么区别,如例子中的Infof。同时SugarLogger还支持以w结尾的方法,这种方式不需要先创建字段对象,直接将字段名和值依次放在参数中即可,如例子中的Infow。
默认情况下,Example输出的日志为 JSON 格式:
{"level":"info","msg":"failed to fetch URL","url":"http://example.org/api","attempt":3,"backoff":"1s"}
{"level":"info","msg":"failed to fetch URL","url":"http://example.org/api","attempt":3,"backoff":"1s"}
{"level":"info","msg":"Failed to fetch URL: http://example.org/api"}
记录层级关系
前面我们记录的日志都是一层结构,没有嵌套的层级。我们可以使用zap.Namespace(key string) Field构建一个命名空间,后续的Field都记录在此命名空间中:
func main() {
logger := zap.NewExample()
defer logger.Sync()
logger.Info("tracked some metrics",
zap.Namespace("metrics"),
zap.Int("counter", 1),
)
logger2 := logger.With(
zap.Namespace("metrics"),
zap.Int("counter", 1),
)
logger2.Info("tracked some metrics")
}
输出:
{"level":"info","msg":"tracked some metrics","metrics":{"counter":1}}
{"level":"info","msg":"tracked some metrices","metrics":{"counter":1}}
上面我们演示了两种Namespace的用法,一种是直接作为字段传入Debug/Info等方法,一种是调用With()创建一个新的Logger,新的Logger记录日志时总是带上预设的字段。With()方法实际上是创建了一个新的Logger:
// src/go.uber.org/zap/logger.go
func (log *Logger) With(fields ...Field) *Logger {
if len(fields) == 0 {
return log
}
l := log.clone()
l.core = l.core.With(fields)
return l
}
定制Logger
调用NexExample()/NewDevelopment()/NewProduction()这 3 个方法,zap使用默认的配置。我们也可以手动调整,配置结构如下:
// src/go.uber.org/zap/config.go
type Config struct {
Level AtomicLevel `json:"level" yaml:"level"`
Encoding string `json:"encoding" yaml:"encoding"`
EncoderConfig zapcore.EncoderConfig `json:"encoderConfig" yaml:"encoderConfig"`
OutputPaths []string `json:"outputPaths" yaml:"outputPaths"`
ErrorOutputPaths []string `json:"errorOutputPaths" yaml:"errorOutputPaths"`
InitialFields map[string]interface{} `json:"initialFields" yaml:"initialFields"`
}
- Level:日志级别;
- Encoding:输出的日志格式,默认为 JSON;
- OutputPaths:可以配置多个输出路径,路径可以是文件路径和stdout(标准输出);
- ErrorOutputPaths:错误输出路径,也可以是多个;
- InitialFields:每条日志中都会输出这些值。
其中EncoderConfig为编码配置:
// src/go.uber.org/zap/zapcore/encoder.go
type EncoderConfig struct {
MessageKey string `json:"messageKey" yaml:"messageKey"`
LevelKey string `json:"levelKey" yaml:"levelKey"`
TimeKey string `json:"timeKey" yaml:"timeKey"`
NameKey string `json:"nameKey" yaml:"nameKey"`
CallerKey string `json:"callerKey" yaml:"callerKey"`
StacktraceKey string `json:"stacktraceKey" yaml:"stacktraceKey"`
LineEnding string `json:"lineEnding" yaml:"lineEnding"`
EncodeLevel LevelEncoder `json:"levelEncoder" yaml:"levelEncoder"`
EncodeTime TimeEncoder `json:"timeEncoder" yaml:"timeEncoder"`
EncodeDuration DurationEncoder `json:"durationEncoder" yaml:"durationEncoder"`
EncodeCaller CallerEncoder `json:"callerEncoder" yaml:"callerEncoder"`
EncodeName NameEncoder `json:"nameEncoder" yaml:"nameEncoder"`
}
- MessageKey:日志中信息的键名,默认为msg;
- LevelKey:日志中级别的键名,默认为level;
- EncodeLevel:日志中级别的格式,默认为小写,如debug/info。
调用zap.Config的Build()方法即可使用该配置对象创建一个Logger:
func main() {
rawJSON := []byte(`{
"level":"debug",
"encoding":"json",
"outputPaths": ["stdout", "server.log"],
"errorOutputPaths": ["stderr"],
"initialFields":{"name":"dj"},
"encoderConfig": {
"messageKey": "message",
"levelKey": "level",
"levelEncoder": "lowercase"
}
}`)
var cfg zap.Config
if err := json.Unmarshal(rawJSON, &cfg); err != nil {
panic(err)
}
logger, err := cfg.Build()
if err != nil {
panic(err)
}
defer logger.Sync()
logger.Info("server start work successfully!")
}
上面创建一个输出到标准输出stdout和文件server.log的Logger。观察输出:
{"level":"info","message":"server start work successfully!","name":"dj"}
使用NewDevelopment()创建的Logger使用的是如下的配置:
// src/go.uber.org/zap/config.go
func NewDevelopmentConfig() Config {
return Config{
Level: NewAtomicLevelAt(DebugLevel),
Development: true,
Encoding: "console",
EncoderConfig: NewDevelopmentEncoderConfig(),
OutputPaths: []string{"stderr"},
ErrorOutputPaths: []string{"stderr"},
}
}
func NewDevelopmentEncoderConfig() zapcore.EncoderConfig {
return zapcore.EncoderConfig{
// Keys can be anything except the empty string.
TimeKey: "T",
LevelKey: "L",
NameKey: "N",
CallerKey: "C",
MessageKey: "M",
StacktraceKey: "S",
LineEnding: zapcore.DefaultLineEnding,
EncodeLevel: zapcore.CapitalLevelEncoder,
EncodeTime: zapcore.ISO8601TimeEncoder,
EncodeDuration: zapcore.StringDurationEncoder,
EncodeCaller: zapcore.ShortCallerEncoder,
}
}
NewProduction()的配置可自行查看。
选项
NewExample()/NewDevelopment()/NewProduction()这 3 个函数可以传入若干类型为zap.Option的选项,从而定制Logger的行为。又一次见到了选项模式!!
zap提供了丰富的选项供我们选择。
输出文件名和行号
调用zap.AddCaller()返回的选项设置输出文件名和行号。但是有一个前提,必须设置配置对象Config中的CallerKey字段。也因此NewExample()不能输出这个信息(它的Config没有设置CallerKey)。
func main() {
logger, _ := zap.NewProduction(zap.AddCaller())
defer logger.Sync()
logger.Info("hello world")
}
输出:
{"level":"info","ts":1587740198.9508286,"caller":"caller/main.go:9","msg":"hello world"}
Info()方法在main.go的第 9 行被调用。AddCaller()与zap.WithCaller(true)等价。
有时我们稍微封装了一下记录日志的方法,但是我们希望输出的文件名和行号是调用封装函数的位置。这时可以使用zap.AddCallerSkip(skip int)向上跳 1 层:
func Output(msg string, fields ...zap.Field) {
zap.L().Info(msg, fields...)
}
func main() {
logger, _ := zap.NewProduction(zap.AddCaller(), zap.AddCallerSkip(1))
defer logger.Sync()
zap.ReplaceGlobals(logger)
Output("hello world")
}
输出:
{"level":"info","ts":1587740501.5592482,"caller":"skip/main.go:15","msg":"hello world"}
输出在main函数中调用Output()的位置。如果不指定zap.AddCallerSkip(1),将输出"caller":"skip/main.go:6",这是在Output()函数中调用zap.Info()的位置。因为这个Output()函数可能在很多地方被调用,所以这个位置参考意义并不大。试试看!
输出调用堆栈
有时候在某个函数处理中遇到了异常情况,因为这个函数可能在很多地方被调用。如果我们能输出此次调用的堆栈,那么分析起来就会很方便。我们可以使用zap.AddStackTrace(lvl zapcore.LevelEnabler)达成这个目的。该函数指定lvl和之上的级别都需要输出调用堆栈:
func f1() {
f2("hello world")
}
func f2(msg string, fields ...zap.Field) {
zap.L().Warn(msg, fields...)
}
func main() {
logger, _ := zap.NewProduction(zap.AddStacktrace(zapcore.WarnLevel))
defer logger.Sync()
zap.ReplaceGlobals(logger)
f1()
}
将zapcore.WarnLevel传入AddStacktrace(),之后Warn()/Error()等级别的日志会输出堆栈,Debug()/Info()这些级别不会。运行结果:
{"level":"warn","ts":1587740883.4965692,"caller":"stacktrace/main.go:13","msg":"hello world","stacktrace":"main.f2\n\td:/code/golang/src/github.com/darjun/go-daily-lib/zap/option/stacktrace/main.go:13\nmain.f1\n\td:/code/golang/src/github.com/darjun/go-daily-lib/zap/option/stacktrace/main.go:9\nmain.main\n\td:/code/golang/src/github.com/darjun/go-daily-lib/zap/option/stacktrace/main.go:22\nruntime.main\n\tC:/Go/src/runtime/proc.go:203"}
把stacktrace单独拉出来:
main.f2
d:/code/golang/src/github.com/darjun/go-daily-lib/zap/option/stacktrace/main.go:13
main.f1
d:/code/golang/src/github.com/darjun/go-daily-lib/zap/option/stacktrace/main.go:9
main.main
d:/code/golang/src/github.com/darjun/go-daily-lib/zap/option/stacktrace/main.go:22
runtime.main
C:/Go/src/runtime/proc.go:203
很清楚地看到调用路径。
全局Logger
为了方便使用,zap提供了两个全局的Logger,一个是*zap.Logger,可调用zap.L()获得;另一个是*zap.SugaredLogger,可调用zap.S()获得。需要注意的是,全局的Logger默认并不会记录日志!它是一个无实际效果的Logger。看源码:
// go.uber.org/zap/global.go
var (
_globalMu sync.RWMutex
_globalL = NewNop()
_globalS = _globalL.Sugar()
)
我们可以使用ReplaceGlobals(logger *Logger) func()将logger设置为全局的Logger,该函数返回一个无参函数,用于恢复全局Logger设置:
func main() {
zap.L().Info("global Logger before")
zap.S().Info("global SugaredLogger before")
logger := zap.NewExample()
defer logger.Sync()
zap.ReplaceGlobals(logger)
zap.L().Info("global Logger after")
zap.S().Info("global SugaredLogger after")
}
输出:
{"level":"info","msg":"global Logger after"}
{"level":"info","msg":"global SugaredLogger after"}
可以看到在调用ReplaceGlobals之前记录的日志并没有输出。
预设日志字段
如果每条日志都要记录一些共用的字段,那么使用zap.Fields(fs ...Field)创建的选项。例如在服务器日志中记录可能都需要记录serverId和serverName:
func main() {
logger := zap.NewExample(zap.Fields(
zap.Int("serverId", 90),
zap.String("serverName", "awesome web"),
))
logger.Info("hello world")
}
输出:
{"level":"info","msg":"hello world","serverId":90,"serverName":"awesome web"}
与标准日志库搭配使用
如果项目一开始使用的是标准日志库log,后面想转为zap。这时不必修改每一个文件。我们可以调用zap.NewStdLog(l *Logger) *log.Logger返回一个标准的log.Logger,内部实际上写入的还是我们之前创建的zap.Logger:
func main() {
logger := zap.NewExample()
defer logger.Sync()
std := zap.NewStdLog(logger)
std.Print("standard logger wrapper")
}
输出:
{"level":"info","msg":"standard logger wrapper"}
很方便不是吗?我们还可以使用NewStdLogAt(l *logger, level zapcore.Level) (*log.Logger, error)让标准接口以level级别写入内部的*zap.Logger。
如果我们只是想在一段代码内使用标准日志库log,其它地方还是使用zap.Logger。可以调用RedirectStdLog(l *Logger) func()。它会返回一个无参函数恢复设置:
func main() {
logger := zap.NewExample()
defer logger.Sync()
undo := zap.RedirectStdLog(logger)
log.Print("redirected standard library")
undo()
log.Print("restored standard library")
}
看前后输出变化:
{"level":"info","msg":"redirected standard library"}
2020/04/24 22:13:58 restored standard library
当然RedirectStdLog也有一个对应的RedirectStdLogAt以特定的级别调用内部的*zap.Logger方法。
总结
zap用在日志性能和内存分配比较关键的地方。本文仅介绍了zap库的基本使用,子包zapcore中有更底层的接口,可以定制丰富多样的Logger。
大家如果发现好玩、好用的 Go 语言库,欢迎到 Go 每日一库 GitHub 上提交 issue
参考
- zap GitHub:https://github.com/jordan-wright/zap
- Go 每日一库 GitHub:https://github.com/darjun/go-daily-lib
相关推荐
- 墨尔本一华裔男子与亚裔男子分别失踪数日 警方寻人
-
中新网5月15日电据澳洲新快网报道,据澳大利亚维州警察局网站消息,22岁的华裔男子邓跃(Yue‘Peter’Deng,音译)失踪已6天,维州警方于当地时间13日发布寻人通告,寻求公众协助寻找邓跃。华...
- 网络交友须谨慎!美国犹他州一男子因涉嫌杀害女网友被捕
-
伊森·洪克斯克(图源网络,侵删)据美国广播公司(ABC)25日报道,美国犹他州一名男子于24日因涉嫌谋杀被捕。警方表示,这名男子主动告知警局,称其杀害了一名在网络交友软件上认识的25岁女子。雷顿警...
- 一课译词:来龙去脉(来龙去脉 的意思解释)
-
Mountainranges[Photo/SIPA]“来龙去脉”,汉语成语,本指山脉的走势和去向,现比喻一件事的前因后果(causeandeffectofanevent),可以翻译为“i...
- 高考重要考点:range(range高考用法)
-
range可以用作动词,也可以用作名词,含义特别多,在阅读理解中出现的频率很高,还经常作为完形填空的选项,而且在作文中使用是非常好的高级词汇。...
- C++20 Ranges:现代范围操作(现代c++白皮书)
-
1.引言:C++20Ranges库简介C++20引入的Ranges库是C++标准库的重要更新,旨在提供更现代化、表达力更强的方式来处理数据序列(范围,range)。Ranges库基于...
- 学习VBA,报表做到飞 第二章 数组 2.4 Filter函数
-
第二章数组2.4Filter函数Filter函数功能与autofilter函数类似,它对一个一维数组进行筛选,返回一个从0开始的数组。...
- VBA学习笔记:数组:数组相关函数—Split,Join
-
Split拆分字符串函数,语法Split(expression,字符,Limit,compare),第1参数为必写,后面3个参数都是可选项。Expression为需要拆分的数据,“字符”就是以哪个字...
- VBA如何自定义序列,学会这些方法,让你工作更轻松
-
No.1在Excel中,自定义序列是一种快速填表机制,如何有效地利用这个方法,可以大大增加工作效率。通常在操作工作表的时候,可能会输入一些很有序的序列,如果一一录入就显得十分笨拙。Excel给出了一种...
- Excel VBA入门教程1.3 数组基础(vba数组详解)
-
1.3数组使用数组和对象时,也要声明,这里说下数组的声明:'确定范围的数组,可以存储b-a+1个数,a、b为整数Dim数组名称(aTob)As数据类型Dimarr...
- 远程网络调试工具百宝箱-MobaXterm
-
MobaXterm是一个功能强大的远程网络工具百宝箱,它将所有重要的远程网络工具(SSH、Telnet、X11、RDP、VNC、FTP、MOSH、Serial等)和Unix命令(bash、ls、cat...
- AREX:携程新一代自动化回归测试工具的设计与实现
-
一、背景随着携程机票BU业务规模的不断提高,业务系统日趋复杂,各种问题和挑战也随之而来。对于研发测试团队,面临着各种效能困境,包括业务复杂度高、数据构造工作量大、回归测试全量回归、沟通成本高、测试用例...
- Windows、Android、IOS、Web自动化工具选择策略
-
Windows平台中应用UI自动化测试解决方案AutoIT是开源工具,该工具识别windows的标准控件效果不错,但是当它遇到应用中非标准控件定义的UI元素时往往就无能为力了,这个时候选择silkte...
- python自动化工具:pywinauto(python快速上手 自动化)
-
简介Pywinauto是完全由Python构建的一个模块,可以用于自动化Windows上的GUI应用程序。同时,它支持鼠标、键盘操作,在元素控件树较复杂的界面,可以辅助我们完成自动化操作。我在...
- 时下最火的 Airtest 如何测试手机 APP?
-
引言Airtest是网易出品的一款基于图像识别的自动化测试工具,主要应用在手机APP和游戏的测试。一旦使用了这个工具进行APP的自动化,你就会发现自动化测试原来是如此简单!!连接手机要进行...
- 【推荐】7个最强Appium替代工具,移动App自动化测试必备!
-
在移动应用开发日益火爆的今天,自动化测试成为了确保应用质量和用户体验的关键环节。Appium作为一款广泛应用的移动应用自动化测试工具,为测试人员所熟知。然而,在不同的测试场景和需求下,还有许多其他优...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- mybatis plus (70)
- scheduledtask (71)
- css滚动条 (60)
- java学生成绩管理系统 (59)
- 结构体数组 (69)
- databasemetadata (64)
- javastatic (68)
- jsp实用教程 (53)
- fontawesome (57)
- widget开发 (57)
- vb net教程 (62)
- hibernate 教程 (63)
- case语句 (57)
- svn连接 (74)
- directoryindex (69)
- session timeout (58)
- textbox换行 (67)
- extension_dir (64)
- linearlayout (58)
- vba高级教程 (75)
- iframe用法 (58)
- sqlparameter (59)
- trim函数 (59)
- flex布局 (63)
- contextloaderlistener (56)