通过例子讲解Spring Batch入门,优秀的批处理框架
yuyutoo 2024-10-12 01:39 7 浏览 0 评论
1 前言
Spring Batch是一个轻量级的、完善的批处理框架,作为Spring体系中的一员,它拥有灵活、方便、生产可用的特点。在应对高效处理大量信息、定时处理大量数据等场景十分简便。
结合调度框架能更大地发挥Spring Batch的作用。
2 Spring Batch的概念知识
2.1 分层架构
Spring Batch的分层架构图如下:
可以看到它分为三层,分别是:
- Application应用层:包含了所有任务batch jobs和开发人员自定义的代码,主要是根据项目需要开发的业务流程等。
- Batch Core核心层:包含启动和管理任务的运行环境类,如JobLauncher等。
- Batch Infrastructure基础层:上面两层是建立在基础层之上的,包含基础的读入reader和写出writer、重试框架等。
2.2 关键概念
理解下图所涉及的概念至关重要,不然很难进行后续开发和问题分析。
2.2.1 JobRepository
专门负责与数据库打交道,对整个批处理的新增、更新、执行进行记录。所以Spring Batch是需要依赖数据库来管理的。
2.2.2 任务启动器JobLauncher
负责启动任务Job。
2.2.3 任务Job
Job是封装整个批处理过程的单位,跑一个批处理任务,就是跑一个Job所定义的内容。
上图介绍了Job的一些相关概念:
- Job:封装处理实体,定义过程逻辑。
- JobInstance:Job的运行实例,不同的实例,参数不同,所以定义好一个Job后可以通过不同参数运行多次。
- JobParameters:与JobInstance相关联的参数。
- JobExecution:代表Job的一次实际执行,可能成功、可能失败。
所以,开发人员要做的事情,就是定义Job。
2.2.4 步骤Step
Step是对Job某个过程的封装,一个Job可以包含一个或多个Step,一步步的Step按特定逻辑执行,才代表Job执行完成。
通过定义Step来组装Job可以更灵活地实现复杂的业务逻辑。
2.2.5 输入——处理——输出
所以,定义一个Job关键是定义好一个或多个Step,然后把它们组装好即可。而定义Step有多种方法,但有一种常用的模型就是输入——处理——输出,即Item Reader、Item Processor和Item Writer。比如通过Item Reader从文件输入数据,然后通过Item Processor进行业务处理和数据转换,最后通过Item Writer写到数据库中去。
Spring Batch为我们提供了许多开箱即用的Reader和Writer,非常方便。
3 代码实例
理解了基本概念后,就直接通过代码来感受一下吧。整个项目的功能是从多个csv文件中读数据,处理后输出到一个csv文件。
3.1 基本框架
添加依赖:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-batch</artifactId>
</dependency>
<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>runtime</scope>
</dependency>
需要添加Spring Batch的依赖,同时使用H2作为内存数据库比较方便,实际生产肯定是要使用外部的数据库,如Oracle、PostgreSQL。
入口主类:
@SpringBootApplication
@EnableBatchProcessing
public class PkslowBatchJobMain {
public static void main(String[] args) {
SpringApplication.run(PkslowBatchJobMain.class, args);
}
}
也很简单,只是在Springboot的基础上添加注解@EnableBatchProcessing。
领域实体类Employee:
package com.pkslow.batch.entity;
public class Employee {
String id;
String firstName;
String lastName;
}
对应的csv文件内容如下:
id,firstName,lastName
1,Lokesh,Gupta
2,Amit,Mishra
3,Pankaj,Kumar
4,David,Miller
3.2 输入——处理——输出
3.2.1 读取ItemReader
因为有多个输入文件,所以定义如下:
@Value("input/inputData*.csv")
private Resource[] inputResources;
@Bean
public MultiResourceItemReader<Employee> multiResourceItemReader()
{
MultiResourceItemReader<Employee> resourceItemReader = new MultiResourceItemReader<Employee>();
resourceItemReader.setResources(inputResources);
resourceItemReader.setDelegate(reader());
return resourceItemReader;
}
@Bean
public FlatFileItemReader<Employee> reader()
{
FlatFileItemReader<Employee> reader = new FlatFileItemReader<Employee>();
//跳过csv文件第一行,为表头
reader.setLinesToSkip(1);
reader.setLineMapper(new DefaultLineMapper() {
{
setLineTokenizer(new DelimitedLineTokenizer() {
{
//字段名
setNames(new String[] { "id", "firstName", "lastName" });
}
});
setFieldSetMapper(new BeanWrapperFieldSetMapper<Employee>() {
{
//转换化后的目标类
setTargetType(Employee.class);
}
});
}
});
return reader;
}
这里使用了FlatFileItemReader,方便我们从文件读取数据。
3.2.2 处理ItemProcessor
为了简单演示,处理很简单,就是把最后一列转为大写:
public ItemProcessor<Employee, Employee> itemProcessor() {
return employee -> {
employee.setLastName(employee.getLastName().toUpperCase());
return employee;
};
}
3.2.3 输出ItremWriter
比较简单,代码及注释如下:
private Resource outputResource = new FileSystemResource("output/outputData.csv");
@Bean
public FlatFileItemWriter<Employee> writer()
{
FlatFileItemWriter<Employee> writer = new FlatFileItemWriter<>();
writer.setResource(outputResource);
//是否为追加模式
writer.setAppendAllowed(true);
writer.setLineAggregator(new DelimitedLineAggregator<Employee>() {
{
//设置分割符
setDelimiter(",");
setFieldExtractor(new BeanWrapperFieldExtractor<Employee>() {
{
//设置字段
setNames(new String[] { "id", "firstName", "lastName" });
}
});
}
});
return writer;
}
3.3 Step
有了Reader-Processor-Writer后,就可以定义Step了:
@Bean
public Step csvStep() {
return stepBuilderFactory.get("csvStep").<Employee, Employee>chunk(5)
.reader(multiResourceItemReader())
.processor(itemProcessor())
.writer(writer())
.build();
}
这里有一个chunk的设置,值为5,意思是5条记录后再提交输出,可以根据自己需求定义。
3.4 Job
完成了Step的编码,定义Job就容易了:
@Bean
public Job pkslowCsvJob() {
return jobBuilderFactory
.get("pkslowCsvJob")
.incrementer(new RunIdIncrementer())
.start(csvStep())
.build();
}
3.5 运行
完成以上编码后,执行程序,结果如下:
成功读取数据,并将最后字段转为大写,并输出到outputData.csv文件。
4 监听Listener
可以通过Listener接口对特定事件进行监听,以实现更多业务功能。比如如果处理失败,就记录一条失败日志;处理完成,就通知下游拿数据等。
我们分别对Read、Process和Write事件进行监听,对应分别要实现ItemReadListener接口、ItemProcessListener接口和ItemWriteListener接口。因为代码比较简单,就是打印一下日志,这里只贴出ItemWriteListener的实现代码:
public class PkslowWriteListener implements ItemWriteListener<Employee> {
private static final Log logger = LogFactory.getLog(PkslowWriteListener.class);
@Override
public void beforeWrite(List<? extends Employee> list) {
logger.info("beforeWrite: " + list);
}
@Override
public void afterWrite(List<? extends Employee> list) {
logger.info("afterWrite: " + list);
}
@Override
public void onWriteError(Exception e, List<? extends Employee> list) {
logger.info("onWriteError: " + list);
}
}
把实现的监听器listener整合到Step中去:
@Bean
public Step csvStep() {
return stepBuilderFactory.get("csvStep").<Employee, Employee>chunk(5)
.reader(multiResourceItemReader())
.listener(new PkslowReadListener())
.processor(itemProcessor())
.listener(new PkslowProcessListener())
.writer(writer())
.listener(new PkslowWriteListener())
.build();
}
执行后看一下日志:
这里就能明显看到之前设置的chunk的作用了。Writer每次是处理5条记录,如果一条输出一次,会对IO造成压力。
5 总结
Spring Batch还有许多优秀的特性,如面对大量数据时的并行处理。本文主要入门介绍为主,不一一介绍,后续会专门讲解。
多读书,多分享;多写作,多整理。
相关推荐
- ETCD 故障恢复(etc常见故障)
-
概述Kubernetes集群外部ETCD节点故障,导致kube-apiserver无法启动。...
- 在Ubuntu 16.04 LTS服务器上安装FreeRADIUS和Daloradius的方法
-
FreeRADIUS为AAARadiusLinux下开源解决方案,DaloRadius为图形化web管理工具。...
- 如何排查服务器被黑客入侵的迹象(黑客 抓取服务器数据)
-
---排查服务器是否被黑客入侵需要系统性地检查多个关键点,以下是一份详细的排查指南,包含具体命令、工具和应对策略:---###**一、快速初步检查**####1.**检查异常登录记录**...
- 使用 Fail Ban 日志分析 SSH 攻击行为
-
通过分析`fail2ban`日志可以识别和应对SSH暴力破解等攻击行为。以下是详细的操作流程和关键分析方法:---###**一、Fail2ban日志位置**Fail2ban的日志路径因系统配置...
- 《5 个实用技巧,提升你的服务器安全性,避免被黑客盯上!》
-
服务器的安全性至关重要,特别是在如今网络攻击频繁的情况下。如果你的服务器存在漏洞,黑客可能会利用这些漏洞进行攻击,甚至窃取数据。今天我们就来聊聊5个实用技巧,帮助你提升服务器的安全性,让你的系统更...
- 聊聊Spring AI Alibaba的YuQueDocumentReader
-
序本文主要研究一下SpringAIAlibaba的YuQueDocumentReaderYuQueDocumentReader...
- Mac Docker环境,利用Canal实现MySQL同步ES
-
Canal的使用使用docker环境安装mysql、canal、elasticsearch,基于binlog利用canal实现mysql的数据同步到elasticsearch中,并在springboo...
- RustDesk:开源远程控制工具的技术架构与全场景部署实战
-
一、开源远程控制领域的革新者1.1行业痛点与解决方案...
- 长安汽车一代CS75Plus2020款安装高德地图7.5
-
不用破解原车机,一代CS75Plus2020款,安装车机版高德地图7.5,有红绿灯读秒!废话不多讲,安装步骤如下:一、在拨号状态输入:在电话拨号界面,输入:*#518200#*(进入安卓设置界面,...
- Zookeeper使用详解之常见操作篇(zookeeper ui)
-
一、Zookeeper的数据结构对于ZooKeeper而言,其存储结构类似于文件系统,也是一个树形目录服务,并通过Key-Value键值对的形式进行数据存储。其中,Key由斜线间隔的路径元素构成。对...
- zk源码—4.会话的实现原理一(会话层的基本功能是什么)
-
大纲1.创建会话...
- Zookeeper 可观测性最佳实践(zookeeper能够确保)
-
Zookeeper介绍ZooKeeper是一个开源的分布式协调服务,用于管理和协调分布式系统中的节点。它提供了一种高效、可靠的方式来解决分布式系统中的常见问题,如数据同步、配置管理、命名服务和集群...
- 服务器密码错误被锁定怎么解决(服务器密码错几次锁)
-
#服务器密码错误被锁定解决方案当服务器因多次密码错误导致账户被锁定时,可以按照以下步骤进行排查和解决:##一、确认锁定状态###1.检查账户锁定状态(Linux)```bash#查看账户锁定...
- zk基础—4.zk实现分布式功能(分布式zk的使用)
-
大纲1.zk实现数据发布订阅...
- 《死神魂魄觉醒》卡死问题终极解决方案:从原理到实战的深度解析
-
在《死神魂魄觉醒》的斩魄刀交锋中,游戏卡死犹如突现的虚圈屏障,阻断玩家与尸魂界的连接。本文将从技术架构、解决方案、预防策略三个维度,深度剖析卡死问题的成因与应对之策,助力玩家突破次元壁障,畅享灵魂共鸣...
你 发表评论:
欢迎- 一周热门
-
-
前端面试:iframe 的优缺点? iframe有那些缺点
-
带斜线的表头制作好了,如何填充内容?这几种方法你更喜欢哪个?
-
漫学笔记之PHP.ini常用的配置信息
-
推荐7个模板代码和其他游戏源码下载的网址
-
其实模版网站在开发工作中很重要,推荐几个参考站给大家
-
[干货] JAVA - JVM - 2 内存两分 [干货]+java+-+jvm+-+2+内存两分吗
-
正在学习使用python搭建自动化测试框架?这个系统包你可能会用到
-
织梦(Dedecms)建站教程 织梦建站详细步骤
-
【开源分享】2024PHP在线客服系统源码(搭建教程+终身使用)
-
2024PHP在线客服系统源码+完全开源 带详细搭建教程
-
- 最近发表
-
- ETCD 故障恢复(etc常见故障)
- 在Ubuntu 16.04 LTS服务器上安装FreeRADIUS和Daloradius的方法
- 如何排查服务器被黑客入侵的迹象(黑客 抓取服务器数据)
- 使用 Fail Ban 日志分析 SSH 攻击行为
- 《5 个实用技巧,提升你的服务器安全性,避免被黑客盯上!》
- 聊聊Spring AI Alibaba的YuQueDocumentReader
- Mac Docker环境,利用Canal实现MySQL同步ES
- RustDesk:开源远程控制工具的技术架构与全场景部署实战
- 长安汽车一代CS75Plus2020款安装高德地图7.5
- Zookeeper使用详解之常见操作篇(zookeeper ui)
- 标签列表
-
- mybatis plus (70)
- scheduledtask (71)
- css滚动条 (60)
- java学生成绩管理系统 (59)
- 结构体数组 (69)
- databasemetadata (64)
- javastatic (68)
- jsp实用教程 (53)
- fontawesome (57)
- widget开发 (57)
- vb net教程 (62)
- hibernate 教程 (63)
- case语句 (57)
- svn连接 (74)
- directoryindex (69)
- session timeout (58)
- textbox换行 (67)
- extension_dir (64)
- linearlayout (58)
- vba高级教程 (75)
- iframe用法 (58)
- sqlparameter (59)
- trim函数 (59)
- flex布局 (63)
- contextloaderlistener (56)