百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

WebRTC 音频抗弱网技术(上) webrtc去杂音

yuyutoo 2024-10-12 01:19 7 浏览 0 评论

人均社恐,钟爱语聊。以语聊房为代表的语音社交产品解锁陌生人社交新方式,也不断讲述着新的出圈故事。关注【融云全球互联网通信云】了解更多

而声音卡顿、断断续续、快进、慢放等现象会严重影响用户体验,直接导致用户离开,这些都是弱网引起的常见问题。


本文主要从音频应用的角度来分析常用的弱网对抗技术,主要有如下几种:

  • 前向纠错技术(FEC、RED 等)
  • 后向纠错技术(ARQ、PLC 等)
  • 编码器抗弱网特性(本文重点关注 OPUS 编码器的特性)
  • 抗抖动技术(JitterBuffer)

我们将用上、下两篇文章,结合 WebRTC 中使用或支持的音频抗弱网技术,对以上几类技术做分析,以实现音频通信服务在弱网环境下高可用。


上篇主要分享前向纠错技术、后向纠错技术及 OPUS 编解码抗弱网特性;下篇专题分享 WebRTC 使用的抗抖动模块 NetEQ。


前向纠错技术


FEC

前向纠错技术,最典型的就是 FEC 技术了。

发送端:生成冗余包来对抗传输过程中丢包的问题;

接收端:对收到的冗余包和正常包来重新恢复传输过程中丢失的包。


FEC 分带内和带外两种,WebRTC 中视频是通过带外 FEC(ULPFEC[1]、FLEXFEC[2])来产生冗余包,音频则是通过 OPUS 带内 FEC 来生成冗余包。

带内 FEC 由于会占用一部分编码码率,所以对音频的音质会有所降低。带外 FEC 不会影响音质,但会额外占用网络带宽,各有优缺点。

FEC 典型的编码方式有 XOR 和 Reed Solomon[3]。WebRTC 的带外 FEC 使用的是 XOR 编码方式(ULPFEC和FLEXFEC),其特点是计算量相对少,但其抗丢包能力有限。

在 WebRTC 中,带外 FEC,不论是 ULPFEC,还是 FLEXFEC 都是根据 MASK 掩码来确定 FEC 包和被保护的源 RTP 包的映射关系,其中定义了两种类型的掩码,RandMask 和 BurstMask,前者在随机丢包中保护效果要好些;后者则是对突发导致连续丢包效果会好些,但是不论哪种,都有其缺点;这里以 7-4 掩码(即 7 个原始包,将生成 4 个冗余包)举例:

#define kMaskBursty7_4 \ 
  0x38, 0x00, \ 
  0x8a, 0x00, \ 
  0xc4, 0x00, \ 
  0x62, 0x00

将上面十六进制按照二进制展开如下:

包序号: S1 S2 S3 S4 S5 S6 S7 
R1: 0 0 1 1 1 0 0      原始包S3,S4,S5被冗余包R1保护
R2: 1 0 0 0 1 0 1 ==>  原始包S1,S5,S7被冗余包R2保护
R3: 1 1 0 0 0 1 0      原始包S1,S2,S6被冗余包R3保护 
R4: 0 1 1 0 0 0 1      原始包S2,S3,S7被冗余包R4保护

上面的掩码表示根据 S1-S7 共 7 个原始包,发送端将生成 4 个冗余包 R1-R4,其中:

  • R1 包保护 S3,S4,S5 三个原始包
  • R2 包保护 S1,S5,S7 三个原始包
  • R3 包保护 S1,S2,S6 三个原始包
  • R4 包保护 S2,S3,S7 三个原始包

从上也可以看出,每个原始包都有被冗余包保护;当包丢失了,一般可以通过冗余包和收到的原始包来进行恢复,比如发送端发送了 S1-S7、R1-R4 共 11 个包,接收端收到了 S1、S3、S5、S7、R1、R2、R3、R4 共 8 个包,丢失了 S2、S4、S6 三个包;则 S2、S4、S6 修复过程如下:

  • S2 可以被 R4、S3、S7 修复,即 S2 = R4 XOR S3 XOR S7
  • S4 可以被 R1、S3、S5 修复,即 S4 = R1 XOR S3 XOR S5
  • S6 可以被 R3、S1、S2 修复,即 S6 = R3 XOR S1 XOR S2

但是也有些包无法修复,比如丢失了 S1、S2、S7,则无法恢复,原因如下:

根据掩码保护关系可知,S1 的恢复可以通过 R2、S5、S7 或者 R3、S2、S6;但因为 S7 和 S2 丢失,要恢复 S1,需要先恢复 S2 或 S7

同样,S2 可以通过 R3、S1、S6 恢复,但因为 S1 丢失,则需要先恢复 S1

同理,S6 可以通过 R3、S1、S2 恢复,但是需要先恢复 S1、S2

所以,经过上面的分析可知 S1、S2、S7 均?法恢复

同理,要是丢失了 S3、S5、S7,也无法恢复,这是 WebRTC 中采用掩码来确定冗余包和原始包之间的保护关系的技术缺点。

即对于(M 个原始包 + N 个冗余包)一组包,有小于等于 N 个包丢失时,可能无法恢复丢失包的情况。

Reed Solomon 编码则可以做到对于(M 个原始包 + N 个冗余包)一组包,有小于等于 N 个包丢失,都可以将丢失的包恢复。

RS FEC 主要是使用范德蒙矩阵或者柯西矩阵来进行编解码[4],柯西矩阵效果比范德蒙矩阵计算量少,性能更优;但不论上面何种矩阵,它们都具有?个特性就是可逆,且任意子矩阵可逆,这就保证了在丢失小于等于 N 个包时,RS 能将其恢复。

下面以范德蒙矩阵做简要说明。以(7,4)为例,即 7 个原始包产生 4 个冗余包,原始包为 S1、S2、S3、S4、S5、S6、S7,冗余包为(R1、R2、R3、R4)。原始包和冗余包的关系如下:


其中上面的范德蒙矩阵为 A,如下所示:


单位矩阵表示如下:


假设 S2 、S4 两数据包丢失了,则将公式 1 中的单位矩阵对应的行删除,则有如下:


公式 2 左侧的矩阵记为 B,如下:


根据范德蒙矩阵可逆特点, 所以 B 也是一个可逆矩阵,记为 B,则恢复包过程其实主要就是求解 B' 矩阵的过程,对公式 2 做如下推导,即可求解原始包,如下所示:


即 (S1、S2、S3、S4、S5、S6、S7)中任何一个包都可以通过矩阵 B' 和收到的包进行恢复。所以 RS 的保护能力更强。


RED[5]

RED 也是前向纠错的?种方式,发送端通过主动发送冗余码,来在?定程度上抵抗包在传输网络丢失的问题。解码端可以通过冗余包恢复丢失的包,RED 的标准规范在 RFC2198 中定义,可用在视频和音频冗余包生成,WebRTC 音频在 m96 上开启了 RED 方式。

RED 的 payload 中不但包含当前包,还包含了历史包,这样 payload 在?定程度上具有冗余信息,起到抗丢包的作用。

下面简要介绍下 RED 的封装格式:RED block head

  0                   1                   2                   3  
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |F| block PT | timestamp offset | block length | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
  
   F: 1表?当前block后还有其它block, 0表?当前block为最后?个block 
   block PT: 表?当前block 的payload type 
   timestamp offset: 表?当前包时间戳相对于rtp head的时间戳的偏移 
   block length: 表?当前block的?度,不包括当前block header?度 
  
   0 1 2 3 4 5 6 7 
   +-+-+-+-+-+-+-+-+ 
   |0| Block PT | 
   +-+-+-+-+-+-+-+-+ 
   表?最后?个block

下面是一个 RED 包的示例:

0 1 2 3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 |V=2|P|X| CC=0 |M| PT | sequence number of primary | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 | timestamp of primary encoding | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 | synchronization source (SSRC) identifier | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 |1| block PT=7 | timestamp offset | block length | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 |0| block PT=5 | | 
 +-+-+-+-+-+-+-+-+ + 
 | | 
 + LPC encoded redundant data (PT=7) + 
 | (14 bytes) | 
 + +---------------+ 
 | | | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + 
 | | 
 + + 
 | | 
 + + 
 | | 
 + + 
 | DVI4 encoded primary data (PT=5) | 
 + (84 bytes, not to scale) + 
 / / 
 + + 
 | | 
 + + 
 | | 
 + +---------------+ 
 | | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 


 该 rtp 包是?个 RED 封装,包含两个 block, ?个 block type 为 7, ?个 block type 为 5;即该 rtp 包包含了两中类型的数据包。

WebRTC 中使用 RED 包来生成 audio 冗余包,其原理大致如下:


上图中,发送端除了发送当前包,还会携带之前一个包做为冗余包,当上图的 RED4 包丢失,即 4,3 包丢掉时,后续的 RED5 包到达,包含了 5,4 包,结合之前 RED3 包(包含了 3, 2 包),可以恢复丢失的包。


后向纠错技术


ARQ

ARQ 为丢包重传技术,接收端通过向发送端请求重发丢失的包来恢复丢失的包。

这个相对于前向纠错技术来讲,延时偏高,在延时小的情况下,是个比较合适的选择。

原理如下所示:


数据包 3 第?次发送时,接收端没有收到,便向发送端发起 3 的重传请求(WebRTC 中使? NACK RTCP 包),发送端收到了接收的重传请求后,则再次重发报文 3。

下面是对 WebRTC 中使用的 NACK[6] RTCP 格式的简单介绍,NACK RTCP 在 RFC4585 中有介绍,NACK 属于反馈消息,即 Feedback Message,格式如下:

 0                  1                   2                   3 
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |V=2|P| FMT | PT | length | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | SSRC of packet sender | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | SSRC of media source | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   : Feedback Control Information (FCI) : 
   : : 
  
   Figure 3: Common Packet Format for Feedback Messages

PT 有两种大类型:?

Name | Value | Brief Description 
 ----------+-------+------------------------------------ 
 RTPFB | 205 | Transport layer FB message 
 PSFB | 206 | Payload-specific FB message

NACK 对应的 FCI 消息格式如下:

0                 1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
| PID | BLP | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 


            Figure 4: Syntax for the Generic NACK message 


NACK的PT=RTPFB 且 FMT=1 
PID表?当前重传请求的第?个seqnum 
BLP为16位,代表PID所指的seqnum后连续的16个seqnum的重传请求情况, 1表?当前位对应的se qnum丢失,接收端对其进?了重传请求, 0表?未对该位对应的seqnum做重传请求 
NACK中可以携带多个FCI端


PLC

PLC 称之为丢包隐藏技术,位于接收端,也即解码端;解码端根据历史语音帧,对其进行信号分析,通过线性预测系数进行 LPC 建模,来预测丢失的语音帧,这项技术的可行性是基于语音的短时语音相似性。

其优点是,不占用额外带宽;PLC 技术可以处理较小的丢包率(<15%)。

NetEQ 中的丢包隐藏是根据上一语音帧的线性预测系数 PLC 来建模,根据历史语音信号重建语音信号然后加载一定的随机噪声;

连续丢包隐藏时,均使用同一个线性预测系数 LPC 重建语音信号,注意这?需要减少连续重建信号间的相关性,因此丢包隐藏产生的数据包能量递减;

最后为了语音连续,需要做平滑处理。当需要进行丢包补偿时,从存储最近 70ms 的语音缓冲区中取出最新的一帧数据并计算该帧的 LPC 系数即可

WebRTC 的 NetEQ 模块和 OPUS 解码器都具有 PLC 的功能,要是 Decoder 支持 PLC,优先使用解码器的 PLC 功能,否则使用 NetEQ 的 PLC 功能,下一篇文章在介绍 NetEQ 模块时,会进行较详细说明。


编码器 OPUS 抗弱网特性[7]


OPUS 不但是开源且无专利的编解码器, 而且相比其它编解码器来说,性能十分优越。这也是 WebRTC 音频通常使用它的原因。

下面对 OPUS 的一些特性进行说明,这些特性在对抗弱网上都有非常大的帮助。


?持全频带带宽

OPUS 支持的码率可以从窄带 6kbps 到?品质立体声 510kbps,下面这幅图说明 OPUS 从窄带到高品质宽带都能覆盖,且相同码率下,品质更高。


OPUS 支持动态码率调准

可以无缝调节码高低,同等码率下,OPUS 的音效品质更高;同时在丢包情况下,当丢包率大于一定范围时,会将编码模式转换成为 SILK 模式,即低码率模式,以适应网络情况。

//设置码率接?,可以通过该接?动态调整码率 
WebRTCOPUS_SetBitRate 
 
/* When FEC is enabled and there's enough packet loss, use SILK */ 
if (st->silk_mode.useInBandFEC && st->silk_mode.packetLossPercentage > (128-vo ice_est)>>4) 
      st->mode = MODE_SILK_ONLY;


OPUS 延时更低

OPUS 结合了两种编解码技术,SILK(用于语音)和CELT(用于音乐),具有低延迟优势。

这对于用作低延迟音频通信链路的一部分是必不可少的, OPUS 可以以牺牲语音质量为代价将算法延迟减少到 5 毫秒。

现有的音乐编解码器(例如 MP3、Vorbis 和 HE-AAC)具有 100 毫秒或更多的延迟,而 OPUS 的延迟要低得多,但在质量上与比特率相当,如下图所示:


OPUS 支持带内 FEC

OPUS 支持带内 FEC 功能,在使用 FEC 后,可以根据丢包率来生成冗余包,提高音频的抗丢包能力。

OPUS 的带内 FEC 功能使用方式类似 RED 方法,即发送当前包时,会携带上一个包的内容,只不过是上一个包是使用低码率编码来产生冗余包的,类似下面的方式:

|1| | -> |2|1| -> |3|2| -> |4|3| -> |5|4| -> |6|5|

下面是 OPUS 和 FEC 相关的几个接口:

//使能内置FEC
WebRTCOPUS_EnableFec
//向OPUS传递丢包率 
WebRTCOPUS_SetPacketLossRate 


//根据丢包率及useInBandFEC来判断是否开启低码率编码,即利?低码率编码来上?帧语?帧,?成 冗余包 
st->silk_mode.LBRR_coded = decide_fec(st->silk_mode.useInBandFEC, 
             st- >silk_mode.packetLossPercentage, st->silk_mode.LBRR_coded, st->mode, &st->bandwidth, equiv_rate); 
             
//根据是否?持FEC,来分配SILK rate 
static int compute_silk_rate_for_hybrid(int rate, int bandwidth, int frame20ms, int vbr, int fec) 




/* Low-Bitrate Redundancy (LBRR) encoding. 
Reuse all parameters but encode excitation at lower bitrate */ 
static OPUS_INLINE void silk_LBRR_encode_FLP( 
    silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ 
    silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ 
    const silk_float xfw[], /* I Input signal */ 
    OPUS_int condCoding /* I The type of conditional coding used so far for this frame */ 
)

这里需要指出的是,OPUS 内置的 FEC 包只在 SILK 模式下生成,CELT 编码模式下是不生成冗余包的。

if (st->mode == MODE_CELT_ONLY) 
   redundancy = 0; 


 if (redundancy) 
 { 
     redundancy_bytes = compute_redundancy_bytes(max_data_bytes, st- >bitrate_bps, frame_rate, st->stream_channels); 
     if (redundancy_bytes == 0) 
        redundancy = 0; 
 }

WebRTC 中 FEC 的功能开启是通过 SDP 协商来完成的,如下所示:

a=rtpmap:111 OPUS/48000/2 
a=fmtp:111 minptime=10;useinbandfec=1

下图是 OPUS 开启 FEC 和没开启 FEC 的效果对比图[8]


从图中可以看出,FEC 开启后,在 20% 丢包情况下,音频 MOS 值提升还是非常明显的。


OPUS 解码端支持 PLC

OPUS 解码端支持丢包隐藏,其原理是根据语音信号具有短时相似性的特点,利用上一帧正常或恢复的语音信号,对其进行信号分析,重建和预测当前丢失的语音帧。

int WebRTCOPUS_Decode(OPUSDecInst* inst, const uint8_t* encoded, 
                      size_t encoded_bytes, int16_t* decoded, 
                      int16_t* audio_type) { 
  int decoded_samples; 


  if (encoded_bytes == 0) { 
    *audio_type = DetermineAudioType(inst, encoded_bytes); 
    decoded_samples = WebRTCOPUS_DecodePlc(inst, decoded, 1); 
  } else { 
   ... 
  }


OPUS 语音功能支持 DTX

当不是音乐模式时,即在 VoIP 模式下,当检测到某个时间期间内没有说话声时,为了节省带宽,可以将开启 DTX。

这个时候,在没有检测到通话声音时,OPUS 会定期 400ms 发送静音包,达到降低带宽的目的,WebRTC 默认没有开启这个特性,要开启 DTX,只需要 SDP 协商时,在 a=ftmp 这一行中加入 usedtx=1 即可开启。

WebRTCOPUS_EnableDtx  
WebRTCOPUS_

OPUS 本?具有很多抗弱网的特性,这些特性再配合丢包重传,可以使音频具备很强的抗弱网能力。


本文主要结合实际弱网处理工作经验,从前向纠错、后向纠错及 OPUS 编码器本身特性等方面,对音频弱网一些常用技术做简要说明和总结。

弱网处理还有一个关键的抗抖动技术,将在该系列的下一篇文章中详细介绍。


参考资料:

[1]: https://datatracker.ietf.org/doc/html/rfc5109

[2]: https://datatracker.ietf.org/doc/html/draft-ietf-payload-flexible-fec-scheme-03

[3]:?https://tex2e.github.io/rfctranslater/html/rfc5510.html?

[4]:https://www.scirp.org/pdf/6-2.16.pdf

[5]:https://datatracker.ietf.org/doc/html/rfc2198

[6]https://tex2e.github.io/rfc-translater/html/rfc4585.html

[7]:https://ja.wikipedia.org/wiki/OPUS_(%E9%9F%B3%E5%A3%B0%E5%9C%A7%E7%B8%AE)

[8]:https://www.OPUScodec.org/static/presentations/OPUS_voice_aes135.pdf

相关推荐

墨尔本一华裔男子与亚裔男子分别失踪数日 警方寻人

中新网5月15日电据澳洲新快网报道,据澳大利亚维州警察局网站消息,22岁的华裔男子邓跃(Yue‘Peter’Deng,音译)失踪已6天,维州警方于当地时间13日发布寻人通告,寻求公众协助寻找邓跃。华...

网络交友须谨慎!美国犹他州一男子因涉嫌杀害女网友被捕

伊森·洪克斯克(图源网络,侵删)据美国广播公司(ABC)25日报道,美国犹他州一名男子于24日因涉嫌谋杀被捕。警方表示,这名男子主动告知警局,称其杀害了一名在网络交友软件上认识的25岁女子。雷顿警...

一课译词:来龙去脉(来龙去脉 的意思解释)

Mountainranges[Photo/SIPA]“来龙去脉”,汉语成语,本指山脉的走势和去向,现比喻一件事的前因后果(causeandeffectofanevent),可以翻译为“i...

高考重要考点:range(range高考用法)

range可以用作动词,也可以用作名词,含义特别多,在阅读理解中出现的频率很高,还经常作为完形填空的选项,而且在作文中使用是非常好的高级词汇。...

C++20 Ranges:现代范围操作(现代c++白皮书)

1.引言:C++20Ranges库简介C++20引入的Ranges库是C++标准库的重要更新,旨在提供更现代化、表达力更强的方式来处理数据序列(范围,range)。Ranges库基于...

学习VBA,报表做到飞 第二章 数组 2.4 Filter函数

第二章数组2.4Filter函数Filter函数功能与autofilter函数类似,它对一个一维数组进行筛选,返回一个从0开始的数组。...

VBA学习笔记:数组:数组相关函数—Split,Join

Split拆分字符串函数,语法Split(expression,字符,Limit,compare),第1参数为必写,后面3个参数都是可选项。Expression为需要拆分的数据,“字符”就是以哪个字...

VBA如何自定义序列,学会这些方法,让你工作更轻松

No.1在Excel中,自定义序列是一种快速填表机制,如何有效地利用这个方法,可以大大增加工作效率。通常在操作工作表的时候,可能会输入一些很有序的序列,如果一一录入就显得十分笨拙。Excel给出了一种...

Excel VBA入门教程1.3 数组基础(vba数组详解)

1.3数组使用数组和对象时,也要声明,这里说下数组的声明:'确定范围的数组,可以存储b-a+1个数,a、b为整数Dim数组名称(aTob)As数据类型Dimarr...

远程网络调试工具百宝箱-MobaXterm

MobaXterm是一个功能强大的远程网络工具百宝箱,它将所有重要的远程网络工具(SSH、Telnet、X11、RDP、VNC、FTP、MOSH、Serial等)和Unix命令(bash、ls、cat...

AREX:携程新一代自动化回归测试工具的设计与实现

一、背景随着携程机票BU业务规模的不断提高,业务系统日趋复杂,各种问题和挑战也随之而来。对于研发测试团队,面临着各种效能困境,包括业务复杂度高、数据构造工作量大、回归测试全量回归、沟通成本高、测试用例...

Windows、Android、IOS、Web自动化工具选择策略

Windows平台中应用UI自动化测试解决方案AutoIT是开源工具,该工具识别windows的标准控件效果不错,但是当它遇到应用中非标准控件定义的UI元素时往往就无能为力了,这个时候选择silkte...

python自动化工具:pywinauto(python快速上手 自动化)

简介Pywinauto是完全由Python构建的一个模块,可以用于自动化Windows上的GUI应用程序。同时,它支持鼠标、键盘操作,在元素控件树较复杂的界面,可以辅助我们完成自动化操作。我在...

时下最火的 Airtest 如何测试手机 APP?

引言Airtest是网易出品的一款基于图像识别的自动化测试工具,主要应用在手机APP和游戏的测试。一旦使用了这个工具进行APP的自动化,你就会发现自动化测试原来是如此简单!!连接手机要进行...

【推荐】7个最强Appium替代工具,移动App自动化测试必备!

在移动应用开发日益火爆的今天,自动化测试成为了确保应用质量和用户体验的关键环节。Appium作为一款广泛应用的移动应用自动化测试工具,为测试人员所熟知。然而,在不同的测试场景和需求下,还有许多其他优...

取消回复欢迎 发表评论: